Solutions to AS Physics Bridging Workbook

- 1. Any 3 V=IR, GPE = mgh, v = $f\lambda$, P=VI, Q = It, E=P/t, etc.
- R = Resistance, A = Amperes, F = Farads, m = milli , I = Current, ρ = Density or Resistivity, Q = Charge, V = Voltge
- 86 (24+26 characters = 50, all of which have an upper and lower case so 50 x 2 = 100) However, there are some duplications. Removing the 14 identical symbols eg capital A and capital alpha, the answer is 100-14 = 86. Allow 85 if lower case kappa considered a duplicate of lower case k.
- 4. C = wave speed, f = frequency, λ = wavelength
- 5. Any 2 from data sheet
- 6. Any two symbols from data sheet equations where same letters used to describe different quantities. (1 mark for letter/symbol, 1 mark for what it stands for, 1 for equation they are in)

7.

- a. 15cm = 1.5 x 10⁻¹m
- b. 500g = 5 x 10⁻¹kg
- c. 3 x 10³m
- d. 35mV = 3.5 x 10⁻²V
- e. $220nF = 2.2 \times 10^{-7}F$

8.

- a. $1m^2 = 100000mm^2 \text{ or } 10^6 mm^2$,
- b. 0.45 mm² = 4.5 x 10^{-7} m²,
- c. 1cm³ = 10⁻⁶m³,
- d. 22.4 mm³ = $1.4x10^{-5}$ m³
- 9. 2 marks for any sensible comment

10.

- a. 86 = 8.6 x 10¹,
- b. 381 = 3.81 x 10²,
- c. 45300 = 4.53 x 10⁴,
- d. 1,500,000,000 = 1.5 x 10⁹,
- e. 0.03 = 3 x 10⁻²,
- f. 0.00045 = 4.5 x 10⁻⁴,
- g. 0.000000782 = 7.82 x 10⁻⁸

11.

- a. 8.68 x 10¹⁸,
- b. 21.1,
- c. 3.05,
- d. 0.83,
- e. 65.0°,
- f. 65.0°,
- g. Not defined (calculator may return MA error) because 1.0052 is not in the range of Sin(x) which must be between -1 and +1
- h. 4.27 x 10⁻⁶,
- i. 2.30,
- j. 7.81
- 12. Any two from data sheet
- 13. R = V/I, $v = \rho/m$, $m = \rho V$, C = Q/V

a.
$$v = \frac{nRT}{p}$$
,
b. $\Delta h = \frac{Ep}{mg}$,
c. $G = -\frac{VR}{M}$,
d. $D = \frac{WS}{\lambda}$
15. $t = \frac{v-u}{a}$, $r = \frac{E-V}{l}$
16. $v = \sqrt{\frac{2E_K}{m}}$ or $v = \left(\frac{2E_K}{m}\right)^{\frac{1}{2}}$
 $k = \frac{4\pi^2 m}{T^2}$
 $C = \frac{1}{4\pi^2 Lf^2}$

Bonus: $t = -RC \ln(\frac{V}{V_o})$

17. 850 Ω (2 marks if +/- 10 Ω , 1 mark if +/- 20 Ω), 3500Hz precisely (1 mark if within +/- 100Hz). Graph should look like this:

18. Gradient by triangle construction method = 0.2 (4 marks if large triangle (half page) drawn on graph)

Units are ΩHz⁻¹ (2 marks)

If graph drawn with frequency on Y axis, gradient is 4.8 $\text{Hz}\Omega^{\text{-}1}$

19. The gradient $0.2 = 2\pi L$ so rearrange to $L = \frac{0.2}{2\pi}$ to obtain L = 0.03H. Allow ECF from gradient calculated in 18.

Note: if graph drawn in 18 had frequency on Y axis, the equation would be $f = \left(\frac{1}{2\pi L}\right) X_L$ with $\frac{1}{2\pi L} = 4.8$, gives $L = \frac{1}{2\pi \times 4.8}$, giving the same result of L = 0.03H

- 20. Zero (it should be because the equation $X_L = 2\pi L f$ has no added part (ie the +c in the y = mx + c form is zero).
- 21. Correctly scaled graph (2 marks), with axis labels with units (2 marks) points correctly plotted (2 marks), Correctly placed line of best fit (2 marks). If dot-to-dot line is drawn, award zero for whole graph. Correct graph for reference:

22. This looks like $y = x^2$ (quadratic) (1 mark), so $P \propto V^2$ (1 mark)

 $\frac{Bonus:}{P = I^2 R \text{ seen}} \quad (1 \text{ mark})$

V = IR (Ohm's law) seen (1 mark)

Re-arrange Ohm to get $I = \frac{V}{R}$ (1 mark)

Sub *I* into $P = I^2 R$ to get $P = \left(\frac{V}{R}\right)^2 R$ (1 mark)

So $P = \frac{V^2}{R}$ which shows that P depends on V² as required (1 mark)

23. (a) Mean = 35g , Range = 6g, Absolute uncertainty $\epsilon = \pm 3g$, Percentage uncertainty $\alpha = \pm 9\%$ (b) Mean = 17.6N, Range =1.1N, Absolute uncertainty $\epsilon = \pm 0.55N$, Percentage uncertainty $\alpha = \pm 3\%$