YEAR 7 - REASONING WITH NUMBER

Sets and probability

What do I need to be able to do?

By the end of this unit you should be able to:

- Identify and represent sets
- Interpret and create Venn diagrams
- Understand and use the intersection of sets
- Understand and use the union of sets
- Generate sample spaces for single events
- Calculate the probability of a single event Understand and use the probability scale

Keywords

Set: collection of things

Element: each item in a set is called an element

Intersection: the overlapping part of a Venn diagram (QND \cap)

Union: two ellipses that join (OR U)

Mutually Exclusive: events that do not occur at the same time

Probability: likelihood of an event happening

Bias: a built-in error that makes all values wrong (unequal) by a certain amount, e.g. a weighted dice

Fair: there is zero bias, and all outcomes have an equal likelihood

Random: something happens by chance and is unable to be predicted.

ldentify and represent sets

The **universal set** has this symbol ξ — this means EVERYTHING in the Venn diagram is in this set

a set is a collection of things — you write sets inside curly brackets { }

 ξ = {the numbers between | and 50 inclusive}

My sets can include every number between and 50 including those numbers

 $A = \{Square numbers\}$

A = {1, 4, 9, 16, 25, 36, 49}

Oll the numbers in set A are square number and between Land 50

Interpret and create Venn diagrams

Oll of set B is also in Set O so the ellipse fits inside the set.

Oround the outside of every Venn diagram will be a box. If an element is not part of any set it is placed outside an ellipse but inside, the box

Intersection of sets

Elements in the intersection are in set $m{A}$ OND set B

The notation for this is $A \cap B$

 ξ = {the numbers between | and | 15 inclusive}

 $A = \{\text{Multiples of 5}\}$ $B = \{\text{Multiples of 3}\}$

The element in $A \cap B$ is 15

In this example there is only one number that is both a multiple of 3 and a multiple of 5 between 1 and 15

Jnion of sets

Elements in the union could be in set $oldsymbol{A}$ OR set

 ξ = {the numbers between 1 and 15 inclusive}

 $A = \{\text{Multiples of 5}\}$ $B = \{\text{Multiples of 3}\}$

The elements in $A \cup B$ are 5, 10, 15, 3, 9, 6, 12

yellow balls, so

they have the

same probability

There are 7 elements that are either a multiple of 5 OR a multiple of 3 between 1 and 15

O sample space for this spinner is S = {Pink. Blue. Yellow}

- O Sample space represents a possible outcome from an event
- They can be interpreted in a variety of ways because they do not tell you the probability

This Venn shows the **number of elements** in each set

You only need to write each element once in a sample space diagram

Probability of a single event

Probability can be a fraction, decimal or percentage

- = 40 = ()4() = 4()/
 - Probability is always a value between 0 and 1

The probability scale

The more likely an event the further up the probability it will be in comparison to another event

So 5 intervals on this scale, each

interval value is $\frac{1}{5}$

11 Sum of probabilities

Probability is always a value between 0 and 1

The probability of getting a blue ball is 🕺 :The probability of **NOT** getting a blue ball is $\frac{4}{5}$

The sum of the probabilities is I

The table shows the probability of selecting a type of chocolate

l	Dark	Milk	White
ı	0.15	0.35	

P(white chocolate) = 1 - 0.15 - 0.35

