TYNE
 COMMUNITY
 LEARNING TRUST

Calculation Policy

September 2019

RATIONALE: The 2011 Ofsted published report into Good Practice in Primary Mathematics states that "A feature of strong practice in the maintained schools is their clear, coherent calculation policies and guidance, which are tailored to the particular school's context. They ensure consistent approaches and use of visual images and models that secure progression in pupils' skills and knowledge lesson by lesson and year by year."

AIMS: In our schools we aim for children to become fluent in all four operations. Through our policy we aim to provide consistent approaches and guidance to calculation methods across the school, ensuring that pupils develop efficient written methods which them to perform calculations accurately. We aim for them to become fluent in their calculation skills, allowing them, over time, to use their methods to solve increasingly complex problems with accuracy and efficiency. The progression in calculation skills and expectations match the expectations of the National Primary Curriculum for 2014.

Each operation is broken down into stages. There are recommendations as to when each stage should be introduced, however across our schools we recognise that not all children progress at the same pace. Therefore children will be taught a method that is consistent with their current level. Children should be taught the method at the stage appropriate to their current level of attainment and should move to the next stage as soon as is appropriate in their mathematical development.

Addition

Stage 1	Stage 2	Stage 3	Stage 4	Stage 5	Stage 6
Children understand the concept of addition as the combining of two groups. They understand that when they add two numbers the answer will be larger. They understand the + and = symbols and use these correctly in number sentences. Calculations should be written on either side of the equals sign to that $=$ is not just interpreted as the answer $6+2=8 \quad 8=6+2$ Children use Numicon and visual representations to add two numbers. $2+3=5$ Extending to counting up	Children add 2 and 3 digit numbers using a number line. $17+4=21$ The number line is extended to partitioning and adding tens then units when faced with larger numbers. Children use known number facts to help them bridge through multiples of 10. * Children are supported in developing an understanding that addition and subtraction are inverse operations.	Children are introduced to the column method using numbers appropriate to their current level of attainment. Initially place value counters or deines are used, extending to the short formal method (without exchanging). Children are taught to set out as: 42 +34 addition sign on the left Place Value counters are to be brought down, beginning with the ones column, then tens, then hundreds, in preparation for regrouping.	Children use the short written method using carrying with numbers appropriate to their current level of attainment. The digit carried goes underneath the answer. Initially place value counters or deines are used to secure an understanding of exchanging. Place Value counters are to be brought down, beginning with the ones column, then tens, then hundreds, regrouping as necessary This leads into the written representation below:	Children use larger numbers and decimals of varying digits. They should arrange calculations carefully, using place holders. Examples: Children use decimals in real life contexts e.g. money, millilitres, metres.	

in 1s on a number line.	(* number line is stage 4 method for the addition of time and duration)	Children begin to use the inverse operation to check their addition calculations.	Children routinely use the inverse operation to check their addition calculations. Number line is to be used for time and duration addition. For Example: The appointment was 25 minutes late, they should have been in at 3.45 pm . What time did they get in, instead?		
	Recommended by the end of Year 1	Recommended by the end of Year 2 (with deines, place value counters) Year 4 and beyond	Recommended by the end of Year 3 with deines and place value counters. Year 4 and beyond	Recommended for Year 5 and beyond	

Subtraction

	Stage 2	Stage 3	Stage 4	Stage 5	Stage 6

Multiplication

Stage 1	Stage 2	Stage 3	Stage 4		Stage 5	Stage 6
Children begin to understand the concept of multiplication as 'groups' of. They recognise the x sign and use Numicon and visual representations to show groupings of amounts. 3 groups of 3 $3 \times 3=9$ 3 groups of 2 $3 \times 2=6$ 4 groups of 2 $4 \times 2=8$	Children describe multiplication as an array and begin to recognise that multiplication can be done in any order. This is extended to using a number line, showing multiplication as repeated addition. $3+3+3+3=12$ OR $4 \times 3=12$ Children are supported in developing an understanding that multiplication and division are inverse operations.	Children use arrays and partition of the arrays as a bridge to grid method. They use numbers appropriate to their current level of attainment. Children use the grid method as an informal method to carry out multiplication calculations First with counters . Then... $\begin{aligned} & 30+ \\ & \underline{24} \\ & 54 \end{aligned}$	Children use the short written method using carrying with numbers appropriate to their current level of attainment. $23 \times 8=$ Encourage estimating first as previous stage. $\begin{aligned} & \mathrm{E}=20 \times 10=200 \\ & 23 \\ & \times \quad 8 \\ & \begin{array}{r} 24 \\ \hline 160 \\ \hline 184 \end{array} \quad \text { left } \\ & \hline 10 \times 8) \end{aligned}$ Progressing to: 23 $\text { x } \quad 8$ 184	Ch H Ch th expa step Ex 47 47 50 2 3 40 3	ildren multiply TU by TU and U by TU ildren use the grid method n formal written method, with panded brackets as a first p to multiplying by TU . amples:$\times 52=$$46 \times 43=$300 40 6 346 	Children multiply decimal numbers by a whole Children should round and estimate first Example: $3.25 \times 7=$ would become $3 \times 7 \approx 21$ They then use formal written methods for multiplication, remembering to include place value in answers.

Division

Stage 1	Stage 2	Stage 3	Stage 4	Stag		Stage 6
Children begin to understand the concept of division as grouping and sharing and recognise the \div sign. They use visual representations to show sharing amounts equally 6 shared equally by 3 $6 \div 3=2$ 8 shared equally into 4 groups $8 \div 4=2$	Children describe division as sharing into equal groups Children They develop an understanding of remainders as a 'part left' $7 \div 3=2 r 1$ This is extended to using a number line to show division as repeated addition and thus creating a link between multiplication and division.	Children use arrays to support their understanding of a formal written method. They use numbers appropriate to their current level of attainment. $\begin{array}{r\|r} 13 \\ 7 & 91 \end{array}$ Then... Children use the short written method to divide numbers, including decimals, by a single digit. They use numbers appropriate to their current level of attainment and exchange where necessary Children look at how many 'groups' of can we get... For Example.... $363 \div 3=$	Children use long written method to divide number, including decimals, by two and three digits. They use numbers appropriate to their current level of attainment. Children will have remainders for calculations	Children should use fo for division but then co happen with any rema - Write as a ter - Decimal to a s places - Remainder as - Round the rem - Example: 863 $4 \longdiv { 2 } \begin{array} { c c c c c c } { 2 } & { 1 } & { 5 } & { . } & { 7 } & { 5 } \\ { 8 } & { 6 } & { 3 } & { . } & { 0 ^ { 2 } } & { } \\ { \hline } \end{array}$	al written method ider what should ders. nating decimal cific number of fraction inder up or down $4=$ uld be rounded down to 215 or up to 216 depending on the could be written as a on of 215 and $\frac{3}{4}$ The answer has been extended to a decimal with e answer that terminates. This example is typical for mone example is typical for money and measures.	Not applicable for division

