

GCSE Computer Science – Curriculum Journey

1.1 System Architecture
Understand the purpose of the

Central Processing Unit (CPU) and the
fetch-execute cycle.

Understand common characteristics of
CPUs and how these could affect

their performance.
Know the purpose and characteristics

of embedded systems.
Recall examples of embedded

systems.

1.2 Memory and Storage
Know why computers have primary

storage and how this usually consists of RAM and ROM.
State the key characteristics of RAM and ROM.

Understand how virtual memory works and why it may
be needed in a system.

Know why computers have secondary storage and recognise
a range of secondary storage devices/media.

Compare advantages/disadvantages for different storage devices.
Learn about units and understand why data must

be stored in binary format
Calculate the capacity of devices, the required capacity for

given files, and file sizes of sound, images and text files.
Convert with denary numbers, binary numbers and hexadecimal

equivalents. Perform binary shifts.
Understand how characters are represented in

binary and use the term 'character set'
Understand how an image is represented as a

series of pixels, represented in binary.
Understand the need for file compression

and the effect of each type.

1.3 Computer Networks,
Connections & Protocols

Learn about the types of network:
LAN (local area network) & WAN (wider area network).

Know the characteristics of LANs & WANs
including common examples of each

Understand what different factors can
affect the performance of a network

Know what hardware is needed to connect
stand-alone computers into a LAN

Recognise that the Internet is a worldwide collection of
computer networks, e.g. The Cloud

Acknowledge the advantages and disadvantaged of The Cloud
Compare the benefits and drawbacks of wired

versus wireless connection
Know and recall common protocols and their purposes

Identify advantages and disadvantages of
star and mesh topologies

Understand the concept of layers
and the TCP/IP model

1.4 Network Security
Recognise threats posed to computer

systems and networks.
E.g. of forms of attack studied: Malware, Social

engineering, Brute-force attacks, Denial of service
attacks, Data interception and theft and the

concept of SQL injection.
Know the principles of each form of attack,

including how the attack is used and the
purpose of the attack

Understand how to limit threats and remove
vulnerabilities through the use of common

prevention methods: Penetration testing, Anti-
malware software, Firewalls, User access levels,

Passwords, Encryption,
Physical security

1.5 Systems Software
Know what each function of an

operating system does
Recall features of a user interface

Understand that data is transferred between
devices and the processor, and that this

process needs to be managed.
Understand how User management functions and
file management is used to organise and save files.

Know the purpose and functionality of
utility software

Understand that computers often
come with utility software, and how

this performs housekeeping tasks

1.6 Ethical, Legal,
Cultural & Environmental Impacts

of Digital Technology
Recall, acknowledge and discuss the impacts of
digital technology on wider society, including:

Ethical issues, Legal issues, Cultural issues,
Environmental issues, Privacy issues

Know the legislation relevant to Computer Science
and the purpose of each piece of legislation and

the specific actions it allows or prohibits
Understand the features of open source and the

features of proprietary
Recommend a type of licence for a
given scenario including benefits

and drawbacks

2.1 Algorithms
Study the principles of computational

thinking and understand how they are used
to define and refine problems: Abstraction,

Decomposition, Algorithmic thinking
Produce simple diagrams to show: the structure of a

problem, subsections and their links to other subsections
Complete, write or refine an algorithm using:

Pseudocode, Flowcharts, Reference language/high-level
programming language

Identify common errors and use trace tables
Know, understand and use standard searching and

sorting algorithms such as Binary search or Bubble sort.
Apply algorithms to data sets and identify

the algorithm from given
code or pseudocode

2.2 Programming Fundamentals
Recall the use of variables, constants,

operators, inputs, outputs and assignments.
Use the three basic programming constructs used to

control the flow of a program:
Sequence, Selection, Iteration

Recognise and use comparison operators and
arithmetic operators

Understand the use of data types and choose
suitable data types for data in a given scenario

and understand how data types can change
Use basic string manipulation and basic file handling

operations such as: open, read, write, close
Understand the use of records and SQL queries to

search for data
Understand the use of 1D and 2D arrays

to store and retrieve data
How to use sub programs

2.3 Producing Robust Programs
Understand the issues a programmer

should consider to ensure that a program
caters for all likely input values

Understand how to deal with invalid data in a program
Know the difference between testing modules of a

program during development and testing the
program at the end of production

Understand syntax errors as errors which break the
grammatical rules of the programming language

and stop it from being run
Know logic errors as errors which produce

unexpected outputs
Select and use suitable test data such as:

normal, boundary, invalid, erroneous
Ability to create/complete

a test plan

2.4 Boolean Logic
Use simple logic diagrams using the

operators AND, OR and NOT
Combine Boolean operators using

AND, OR and NOT
Understand truth tables for each logic gate

Recognise each gate symbol
Understand how to create, complete or edit

logic diagrams and truth tables
from given scenarios

Develop the ability to work with more
than one gate in a logic diagram

2.5 Programming
Language and Interated

Development Environments
Know the characteristic and purpose of

high-level & low-level programming language
Understand the purpose and need for translators
Know the difference, benefits and drawbacks of

using a compiler or an interpreter
Have knowledge of the tools that an Integrates
Development Environment (IDE) provides and

understand how each tool can be used to help a
programmer develop a program

Gain practical experience by using a
range of tools within at

least one IDE

During the course of study
students will undertake a
programming task/tasks

The programming task(s) will allow
students to develop skills within the

following areas of programming: Design,
Write, Test, Refine

The task(s) will use a high-level text
based programming language such as,

Python or Small BASIC
Practical Programming Skills

J277/02: Computational thinking,

algorithms and programming

J277/01: Computer Systems

