Using Graphs

What do I need to do ...

- · Reflect shapes in given lines
- Construct and interpret conversion graphs and other real-life straight line graphs
- Construct and interpret distance/time graphs
- · Construct and interpret speed/time graphs
- Construct and interpret piece-wise graphs
- Recognise and interpret graphs that illustrate direct and inverse proportion

Key Words

Quadratic, Parabola, Curve, Substitute, Equation, Vertical, Horizontal, Estimate, Cube, Cubic, Asymptote, Infinity, Reciprocal, Tends towards, Gradient, y-intercept, Coordinate, Roots, Solution, Meets, Exponential, Growth, Decay, Rapid, Radius, Diameter, Pythagoras' Theorem, Origin, Simplify, Tangent, Curve, Equidistant

Horizontal and vertical lines

Conversion graphs

We can use the conversion graph to change between stones and kilograms. The blue line shows us that 6 stones would be approximately 38kg.

Distance/time graphs

stationary

The distancetime graph shows Dora's visit to a friend and back. We can use the formula speed = distance ÷ time to calculate Dora's speed.

Speed/time graphs

The graph shows the speed of a boat over a four hour period.

The gradient represents the change in speed (acceleration). A negative gradient shows slowing down (deceleration).

Piece-wise graphs

The graph shows the cost, in cents, of posting letters of different weights in a country.

Letters up to and including 100 g cost 40 c to send.

Direct and inverse proportion

direct proportion

inverse proportion

Approximate solutions

The diagram shows the graphs $y = x^2$ and y = 2x + 1. We can estimate solutions by looking at the points of intersection.

Estimate area under a curve

To estimate the area under a curve, we need the formula below to calculate the area of trapzia.

Area of a trapezium = 1/2 (a + b) h

Non Linear Graphs

What do I need to do ...

- · Plot/read from quadratic, cubic and reciprocal graphs
- Recognise graph shapes
- Identify and interpret roots and intercepts of quadratics
- Understand and use exponential graphs (HIGHER)
- · Find and use the equation of a circle (HIGHER)
- Find the equation of the tangent to any curve (HIGHER)

Key Words

Quadratic, Parabola, Curve, Substitute, Equation, Vertical, Horizontal, Estimate, Cube, Cubic, Asymptote, Infinity, Reciprocal, Tends towards, Gradient, y-intercept, Coordinate, Roots, Solution, Meets, Exponential, Growth, Decay, Rapid, Radius, Diameter, Pythagoras' Theorem, Origin, Simplify, Tangent, Curve, Equidistant

Table of values

Complete the table for $y = x^2 - 2x + 2$

x	-3	-2	- 1	0	1	2	3	4
у	17				1			10

Use a calculator to substitute the values into

$$x^2 - 2x + 2$$

Enter negatives using the bracket keys...

$$(-2)^2 - 2 \times (-2) + 2$$

Quadratic graphs

If x^2 is the highest power in your equation then you have a <u>quadratic graph</u>

It will have a parabola shape

Cubic graphs

Reciprocal graphs

Reciprocal graphs never touch
the **y** axis
This is because **x** cannot be **0**This is an <u>asymptote</u>

Roots and intercepts

|y-intercept

Roots

Exponential graphs

Equation of a circle

The equation of a circle with centre (0,0) is written in the format $x^2 + y^2 = r^2$.

In the equation $x^2 + y^2 = 25$, the circle has a radius of 5cm.

Equation of a tangent to a curve

We find the equation of a tangent in the same way we find the equation of a line, using y=mx+c.

Gradients and Lines

What do I need to do...

- · Find equations of lines parallel to the axes
- Plot straight line graphs
- Be able to interpret y = mx + c
- Calculate the gradient
- · Find the y-intercept
- · Solve simultaneous equations graphically
 - Find the equation of perpendicular lines

Key Words

Parallel, horizontal, vertical, straight line, axis, equation, graph, intercept, linear, table of values, gradient, y-intercept, scale, point, coordinates, substitute, satisfies, above, below, simultaneous, interception, solutions, product, reciprocal, negative reciprocal.

Equations of lines parallel to the axes

Completing a table of values

Complete the table of values for y = 2x + 3.

x	-2	-1	0	1	2	3
y	-1	1	3	5	7	9

Interpret y = mx + c

The equation of a line is y = mx + c.

y-intercept

Plot straight line graphs

Use the points from your table of values to generate coordinates, e.g. (3, 9).
Plot these points

Plot these points and join with a straight line.

Finding the gradient

Solve simultaneous equations graphically

Finding the y-intercept

Perpendicular lines (HIGHER ONLY)

Perpendicular lines are defined as two lines that intersect at right angles. To find the gradient of a perpendicular line we need to know the negative reciprocal of the gradient.

The negative reciprocal of 5 would be -1/5. The negative reciprocal of -1/4 would be 4. The negative reciprocal of 2/3 would be -3/2.

Manipulating Expressions

What do I need to do...

- ·Simplify algebraic expressions
- •Use Identities
- Add/Subtract algebraic fractions
 - Multiply/Divide algebraic fractions
 - •Form and solve equations & Inequalities with fractions

Key Words

Expression Term Simplify Coefficient Power Numerator Denominator Like/Unlike Variable Identity Equivalent LCM Difference Sum Invert Product Quotient Reciprocal Cancel Factor Factorise Equation Inequality Solve Solution Quadratic Integer Multiple Odd Even Prove Counterexample

Simplify algebraic expressions

Use Identities

Adding algebraic fractions

Find the LCM of the denominators, then use equivalent fractions

Subtracting algebraic fractions

These follow
the same
method for
adding &
subtracting
numerical
fractions!

Multiplying & dividing algebraic fractions

 $\frac{3x^3}{a}\times\frac{5x}{2b}=\frac{3x^3\times5x}{a\times2b}=\frac{15x^4}{2ab} \label{eq:constraint} \begin{array}{c} \text{multiplication law of indices}\\ \text{to multiply the numerators.} \end{array}$ To divide algebraic fractions, we first write the reciprocal of the dividing fraction

and then multiply the **numerators** and multiply the **denominators**
$$\frac{4b}{3} \div \frac{7a}{b} = \frac{4b}{3} \times \frac{b}{7a} = \frac{4b \times b}{3 \times 7a} = \frac{4b^2}{21a}$$
 To find the reciprocal, flip the fraction.

Solve equations

To solve
equations, we
use inverse
operations
The inverse of
add is
subtract and
the inverse of
multiply is
divide

Solving inequalities

Solving inequalities is similar to solving equations, but where an equation has one unique solution, an inequality has a range of solutions.

To **solve an inequality** we calculate the values that an unknown variable can be in that inequality.

Multiplying or dividing by a negative number changes the direction of the inequality.

Parts of an expression

