Biology

| GCSE Homeostasis |         |           |  | Reflex arc |   |
|------------------|---------|-----------|--|------------|---|
| Learned          | Revised | Confident |  |            |   |
|                  |         |           |  |            |   |
| % Achieved:      |         |           |  |            | 3 |

1. Sensory neurones link the receptor to the coordination centre.

2. Relay neurones are found within the coordination centre and connect the sensory and motor neurones.

3. Motor neurones link the coordination centre to the effector.

| N° | Keyword                               | Definition                                                                                                                          |
|----|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Adrenal gland                         | The gland where the hormone adrenaline is produced.                                                                                 |
| 3  | Follicle stimulating<br>hormone (FSH) | A hormone involved in the menstrual cycle that causes maturation of an egg in the ovary.                                            |
| 4  | Glycogen                              | Glucose is converted into this molecule for storage in liver and muscle cells.                                                      |
| 5  | Luteinising<br>hormone (LH)           | A hormone involved in the menstrual cycle that stimulates the release of an egg                                                     |
| 6  | Oestrogen                             | The main female reproductive hormone. It is produced by the ovaries. It is involved in thickening and maintaining the uterus lining |
| 7  | Pituitary gland                       | The 'master gland' located in the brain that secretes several hormones into the blood in response to body conditions.               |
| 8  | Progesterone                          | A female reproductive hormone that is involved in maintaining the uterus lining.                                                    |
| 9  | Synapse                               | A gap between two neurones. Impulses pass across it by diffusion of chemical neurotransmitters.                                     |



| GCSE Ecology |                       |  | Maintaining biodiversity                                   |  |  |  |
|--------------|-----------------------|--|------------------------------------------------------------|--|--|--|
|              |                       |  | Breeding programmes                                        |  |  |  |
| Learned      | ned Revised Confident |  | Protection and regeneration of rare species                |  |  |  |
|              |                       |  | Reintroduction of field margins and hedgerows.             |  |  |  |
|              |                       |  | Reduction of deforestation and carbon dioxide emissions    |  |  |  |
| % Achieved:  |                       |  | Recycling resources rather than dumping waste in landfill. |  |  |  |

| N° | Keyword         | Definition                                                                                                                                                       |
|----|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Abiotic factor  | A non-living factor that can affect a community, e.g. light intensity and temperature                                                                            |
| 2  | Adaptation      | Special features that allow living organisms to survive and be successful in their habitat.                                                                      |
| 3  | Biodiversity    | The variety of all the different species of organisms on Earth, or within an ecosystem.                                                                          |
| 4  | Biotic factor   | A living factor that can affect a community, e.g. availability of food and new predators.                                                                        |
| 5  | Community       | Two or more populations of organisms occupying the same area.                                                                                                    |
| 6  | Ecosystem       | The interaction of a community of living organisms (biotic) and the non-living (abiotic) parts of their environment.                                             |
| 7  | Interdependence | The dependence of each species on other species for food, shelter, pollination, seed dispersal etc. If one species is removed it can affect the whole community. |
| 8  | Quadrat         | A square frame used to take a representative sample of plants or slow-moving animals in an area.                                                                 |
| 9  | Transect        | A line across a habitat or part of a habitat used to sample the number of organisms at regular intervals.                                                        |

Facts

Carbon cycle - the main process involved are respiration, combustion and photosynthesis.

Water cycle - evaporation, condensation, precipitation, percolation, transpiration, respiration. Global warming impacts living things by causing changes in the distribution of organisms, rising sea levels and habitat loss, changing weather patterns and changing migration patterns. Land use for dumping waste, quarrying, farming and building - this reduces biodiversity.



Chemistry

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GCSE Energy<br>changes                                                                                                                                                            |                                                                                                |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Lear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rned Revised Confider                                                                                                                                                             | nt energy products energy activation energy activation energy                                  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | % Achieved:                                                                                                                                                                       | reaction progress reaction progress                                                            |  |  |  |  |  |  |
| N°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Keyword                                                                                                                                                                           | Definition                                                                                     |  |  |  |  |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Endothermic                                                                                                                                                                       | A reaction that takes in energy from the surroundings                                          |  |  |  |  |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Exothermic                                                                                                                                                                        | A reactions that releases energy to the surroundings                                           |  |  |  |  |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Activation energy                                                                                                                                                                 | Minimum amount of energy required to start a reaction                                          |  |  |  |  |  |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Overall energy change                                                                                                                                                             | The difference between the energy of the reactants and the products                            |  |  |  |  |  |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Catalyst                                                                                                                                                                          | Provides an alternate reaction pathway with a lower activation energy to speed up the reaction |  |  |  |  |  |  |
| N°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                   | Focts                                                                                          |  |  |  |  |  |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bond breaking is an endothermic process, it requires energy                                                                                                                       |                                                                                                |  |  |  |  |  |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bond making is an exothermic process, it releases energy                                                                                                                          |                                                                                                |  |  |  |  |  |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | An endothermic reaction has a positive overall energy change - more energy was taken in than was released                                                                         |                                                                                                |  |  |  |  |  |  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | An exothermic reaction h                                                                                                                                                          | nas a negative overall energy change - less energy was taken in than<br>was released           |  |  |  |  |  |  |
| N°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C                                                                                                                                                                                 | Overall energy change calculations (HIGHER)                                                    |  |  |  |  |  |  |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Complete these questions using a simple T-table with "Break" and "Make" as headings.<br>Tick off the bonds as you count them.<br>Total break - Total make = Overall energy change |                                                                                                |  |  |  |  |  |  |
| $H_{2} + CL_{2} \rightarrow 2HCL$ $H + CL_{2} \rightarrow 2HCL$ $H + CL + CL_{2} \rightarrow 2HCL$ $H + CL_{2}$ |                                                                                                                                                                                   |                                                                                                |  |  |  |  |  |  |

|      | GCSE Organic<br>chemistry                                                                                                                                                                                                                                                                                                                                             |                                                      | $\begin{array}{cccccccc} H & H & H & H & H & H & H & H & H & H $      |  |  |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------|--|--|--|--|--|
| Lear | ned Revis                                                                                                                                                                                                                                                                                                                                                             | ed Confiden                                          | THETHANE ETHANE PROPANE BUTANE                                        |  |  |  |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                                       |                                                      | 'Hemeles eus Scouss'                                                  |  |  |  |  |  |
|      | % Achi                                                                                                                                                                                                                                                                                                                                                                | eved:                                                | L'SIMILAR PROPERTIES (REACT IN A SIMILAR WAY)                         |  |  |  |  |  |
| N°   | Кеу                                                                                                                                                                                                                                                                                                                                                                   | word                                                 | Definition                                                            |  |  |  |  |  |
| 1    | Hydro                                                                                                                                                                                                                                                                                                                                                                 | ocarbon                                              | A compound that contains only hydrogen and carbon                     |  |  |  |  |  |
| 2    | Al                                                                                                                                                                                                                                                                                                                                                                    | kane                                                 | The simplest hydrocarbon containing only single bonds. CnH2n+2        |  |  |  |  |  |
| 3    | Sati                                                                                                                                                                                                                                                                                                                                                                  | urated                                               | A molecule that only contains single bonds e.g. Alkanes               |  |  |  |  |  |
| 4    | Al                                                                                                                                                                                                                                                                                                                                                                    | kene                                                 | An unsaturated hydrocarbon. CnH2n                                     |  |  |  |  |  |
| 5    | Vis                                                                                                                                                                                                                                                                                                                                                                   | cosity                                               | How runny or gloopy a substance is                                    |  |  |  |  |  |
| N°   |                                                                                                                                                                                                                                                                                                                                                                       | F                                                    | Tractional distillation                                               |  |  |  |  |  |
| 6    | Crude oil is heated to evaporation<br>The vapors pass into the column which has a temperature gradient<br>Longer chains cool and condense lower in the column<br>Shorter chains cool and condense higher in the column<br>Longer chains have higher boiling points<br>Longer chains have higher boiling points as they have more<br>intermolecular forces to overcome |                                                      |                                                                       |  |  |  |  |  |
| N°   |                                                                                                                                                                                                                                                                                                                                                                       |                                                      | Facts                                                                 |  |  |  |  |  |
| 7    | We                                                                                                                                                                                                                                                                                                                                                                    | can test for all                                     | kenes using bromine water. It goes from orange to colourless          |  |  |  |  |  |
| 8    |                                                                                                                                                                                                                                                                                                                                                                       | The longer the                                       | hydrocarbon chain, the higher the viscosity (more goopy)              |  |  |  |  |  |
| 9    |                                                                                                                                                                                                                                                                                                                                                                       | The longer                                           | the hydrocarbon chain, the higher the boiling point                   |  |  |  |  |  |
| 10   |                                                                                                                                                                                                                                                                                                                                                                       | The longe                                            | er the hydrocarbon chain, the lower the flammability                  |  |  |  |  |  |
| N°   | Cracking hydrocarbons                                                                                                                                                                                                                                                                                                                                                 |                                                      |                                                                       |  |  |  |  |  |
| 11   | Cracking uses steam/high temperature and a catalyst to break long chain alkanes into a shorter alkane and at least one alkene                                                                                                                                                                                                                                         |                                                      |                                                                       |  |  |  |  |  |
|      | LON                                                                                                                                                                                                                                                                                                                                                                   | G CHAIN ALK                                          | ANE                                                                   |  |  |  |  |  |
|      | н н<br>н-с-с-<br>н н                                                                                                                                                                                                                                                                                                                                                  | н н н н н н н н<br>с-с-с-с-с-с-с-с-<br>н н н н н н н | $ \begin{array}{c} H \\ C \\ H \\$ |  |  |  |  |  |

Physics

|      | GCSE Force                                  | es                                                                                                                                          | N°                                  | Contact forces                                                                                      | Non contact forces                                                          |  |  |  |
|------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|
| Lear | ned Revised C                               | onfident                                                                                                                                    | 1                                   | Air resistance<br>Drag<br>Friction<br>Lift<br>Normal contact force<br>Tension<br>Thrust<br>Upthrust | Electrostatic forces<br>Gravitational forces<br>(weight)<br>Magnetic forces |  |  |  |
| N°   | Keyword                                     |                                                                                                                                             |                                     | Definition                                                                                          |                                                                             |  |  |  |
| 2    | Contact force                               | Occurs when two objects must touch for a force to act                                                                                       |                                     |                                                                                                     |                                                                             |  |  |  |
| 3    | Centre of mass                              | The point at which you assume the entire mass of an object is concentrated                                                                  |                                     |                                                                                                     |                                                                             |  |  |  |
| 4    | Elastic<br>deformation                      | The object can go back to its original shape and saize when the forces are removed                                                          |                                     |                                                                                                     |                                                                             |  |  |  |
| 5    | Hooke's law                                 | The extension of an elastic object is directly proportional to the force applied provided that the limit of proportionality is not exceeded |                                     |                                                                                                     |                                                                             |  |  |  |
| 6    | Inelastic<br>deformation                    | The object does NOT go back to its original shape and saize when the forces are removed                                                     |                                     |                                                                                                     |                                                                             |  |  |  |
| 7    | Limit of<br>proportionality                 | The point at which an elastic object stops obeying Hooke's law                                                                              |                                     |                                                                                                     |                                                                             |  |  |  |
| 8    | Non contact<br>force                        | Occurs when two objects do NOT need to touch for the force to act                                                                           |                                     |                                                                                                     |                                                                             |  |  |  |
| 9    | Resultant force                             | A single force that can replace all other forces acting on an object<br>to give the same effect as the original forces acting altogether    |                                     |                                                                                                     |                                                                             |  |  |  |
| 10   | Scalar                                      | Scalar quantities have magnitude only (eg. distance and speed)                                                                              |                                     |                                                                                                     |                                                                             |  |  |  |
| 11   | Vector                                      | Vector quantities have magnitude AND direction (eg. velocity and force)                                                                     |                                     |                                                                                                     |                                                                             |  |  |  |
| 12   | 20N                                         | 50N >                                                                                                                                       | gives a I                           | resultant force 30N ——                                                                              |                                                                             |  |  |  |
|      | 10N 10Ngives a resultant force 0N 10N - 10N |                                                                                                                                             |                                     |                                                                                                     |                                                                             |  |  |  |
| N°   |                                             |                                                                                                                                             | Εq                                  | Equations to learn                                                                                  |                                                                             |  |  |  |
| 13   |                                             | Weight =                                                                                                                                    | mass                                | ass x gravitational field strength                                                                  |                                                                             |  |  |  |
| 14   |                                             | W                                                                                                                                           | Work done = force x distance        |                                                                                                     |                                                                             |  |  |  |
| 15   |                                             | Force                                                                                                                                       | Force = spring constant x extension |                                                                                                     |                                                                             |  |  |  |

| (            | GCSE Forces (2)                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                   |         |                                                                                                                                 | 1          | Τγρίςαι   | speeds      | Å            |              |          |  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------|------------|-----------|-------------|--------------|--------------|----------|--|
| Lear         | rned Revised Con                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   | fident  | Sou                                                                                                                             | UND WAVES  | A         | 1.5 m/s     | 6 m/s        | 55 m/s       |          |  |
|              |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                   |         |                                                                                                                                 | 10         | - A       | 200         | 34000        |              |          |  |
|              | %                                                                                                                                                                                                                                                                                                               | 6 Achieve                                                                                                                                                         | d:      |                                                                                                                                 |            | · 330 m/s | (IN AIR)    | 3 m/s        | 25 m/s       | 250 m/s  |  |
| N°           | P Keyword                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                   |         |                                                                                                                                 |            |           | De          | efinition    |              |          |  |
| 2            | Displacement                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                   |         | A measure of an object's distance and direction in a straight line from its starting point to its finishing point on a journey. |            |           |             |              |              |          |  |
| 3            | Velo                                                                                                                                                                                                                                                                                                            | ocity                                                                                                                                                             |         | Speed in a given direction.                                                                                                     |            |           |             |              |              |          |  |
| 4            | Bra                                                                                                                                                                                                                                                                                                             | king distan                                                                                                                                                       | ce      | The distance moved by a vehicle, once the brakes are applied (affected by the conditions of the road, brakes and tyres)         |            |           |             |              |              |          |  |
| 5            | Thinking distance                                                                                                                                                                                                                                                                                               |                                                                                                                                                                   |         | The distance moved by a vehicle, during the drivers reaction time (affected by tiredness, drugs, alcohol, distractions)         |            |           |             |              |              |          |  |
| 6            | Sto                                                                                                                                                                                                                                                                                                             | oping disto                                                                                                                                                       | nce     | Thinking distance + braking distance                                                                                            |            |           |             |              |              |          |  |
| N°           | N° Newton's laws of motion                                                                                                                                                                                                                                                                                      |                                                                                                                                                                   |         |                                                                                                                                 |            |           |             |              |              |          |  |
| 7            | (1) If the resultant force on a stationary (still) object is zero, the object will remain stationary. If the resultant force on a moving object is zero, the object will keep moving with the same velocity. If there is a non-zero resultant force acting on an object, its velocity will change (accelerate). |                                                                                                                                                                   |         |                                                                                                                                 |            |           |             |              |              |          |  |
| 8            | (2)<br>inv                                                                                                                                                                                                                                                                                                      | (2) Acceleration is directly proportional to force (more force, more acceleration). Acceleration is inversely proportional to mass (more mass, less acceleration) |         |                                                                                                                                 |            |           |             |              |              |          |  |
| 9            | (3)                                                                                                                                                                                                                                                                                                             | When two c                                                                                                                                                        | objects | s interac                                                                                                                       | t, the for | ces they  | exert on eq | ach other ai | re equal and | opposite |  |
| Distance (m) | 10<br>Stopped Accelerating<br>Steady speed<br>Steady speed<br>Time (s)                                                                                                                                                                                                                                          |                                                                                                                                                                   |         |                                                                                                                                 |            |           |             |              |              |          |  |
| N°           |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                   |         |                                                                                                                                 |            | Equatic   | ons to lear | n            |              |          |  |
| 12           |                                                                                                                                                                                                                                                                                                                 | Distance travelled = speed x time                                                                                                                                 |         |                                                                                                                                 |            |           |             |              |              |          |  |
| 13           |                                                                                                                                                                                                                                                                                                                 | Acceleration = <u>change in velocity</u><br>time                                                                                                                  |         |                                                                                                                                 |            |           |             |              |              |          |  |
| 14           | Resultant force = mass x acceleration                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |         |                                                                                                                                 |            |           |             |              |              |          |  |
| 15           | (HIGHER ONLY) Momentum = mass x velocity                                                                                                                                                                                                                                                                        |                                                                                                                                                                   |         |                                                                                                                                 |            |           |             |              |              |          |  |