YEAR \＆－REASONING WITH DATA．．． Measures of location
 ＠whisto＿maths

Keywords

i What do I need to be able to do？

By the end of this unit you should be able to：
－Understand and use mean，median and mode
－Choose the most appropriate average
－Identify outliers
－Compare distributions using averages and range

Spread：the distance／how spread out／variation of data
average：a measure of central tendency－or the typical value of all the data together
Total：all the data added together
I Frequency：the number of times the data values occur
I Represent：something that show＇s the value of another
Outier：a value that stands apart from the data set
Consistent：a set of data that is similar and doesn＇t change very much

Mean，Median，Mode

The Mean
I a measure of average to find the central tendency．．．
I a typical value that represents the data

24，8，4，11， 8

The Median

The value in the center（in the middle）of the data
24，8，4，11， 8,
Put the data in order

The Mode（The modal value）

This is the number $O R$ the item that occurs the most it does not have to be numerical

$24,8,4,11,8$,

Median $=8$

Find the sum of the data（add the values） 55
I Divide the overall total by how many $55 \div 5$
I pieces of data you have
$4,8,8,11,24$
Find the value in the middle $4,8,8,11,24$ NOTE：If there is no single midde value find the mean of the two
order numbers left

I＿ーーーーーーーーーーーーーーーーーーーー
IChoosing the appropriate average

The average should be a representative of the data set－so it should be compared to the set as a whole－to check if it is an appropriate average

Here are the weekly wages of a small firm				
$£ 240$	$£ 240$	$£ 240$	$£ 240$	$£ 240$
$£ 260$	$£ 260$	$£ 300$	$£ 350$	$£ 700$

Which average best represents the weekly wage？
This can still be easier if it the data is ordered first
Mode $=8 \quad 4,8,8,11,24$

Put the data back into context
Mean／Median－too high（most of this company earn £240）
Mode is the best average that represents this wage
It is likely that the salaries above $£ 240$ are more senior staff members－their salary doesn＇t represent the average weekly wage of the majority of employers

dentify outiers

Outiers are values that stand well apart from the rest of the data

I Outliers can have a big impact on range and mean

Where an outlier is identified try to give it some context． This is likely to be a taller member of the group． Could the be an older student or a teacher？

Comparing distributions

Comparisons should include a statement of average and central tendency，as well as a statement about spread and consistency．

$$
\begin{aligned}
& \text { Here are the number of runs scored last month by Lucy and James in } \\
& \text { cricket matches } \\
& \text { Lucy: } 45,32,37,41,48,35 \\
& \text { James: 60, 90, 41,23,14,23 }
\end{aligned}
$$

Lucy
Mean： 39.6 （ldp），Median： 38 ．Mode：no mode，Range： 16 James
Mean： 418 （Idp），Median：32，Mode：23，Range： 76
＂James is less consistent that Lucy because his scores have a greater range．
Lucy performed better on average because her scores have a similar mean and a higher median＂

YEAR \& - REASONING WITH DATA... The data handling cycle

i What do I need to be able to do?
 By the end of this unit you should be able to:
 - Set up a statistical enquiry
 I - Design and criticise questionnaires
 I - Draw and interpret multiple bar charts
 - Draw and interpret line graphs
 - Represent and interpret grouped quantitative data
 I - Find and interpret the range
 I - Compare distributions

Keywords

I Hypothesis: an idea or question you want to test
Sampling: the group of things you want to use to check your hypothesis
I Primary Data: data you collect yourseff
Secondary Data: data you source from elsewhere eg the internet/ newspapers/local statistics
Discrete Data: numerical data that can only take set values
Continuous Data: numerical data that has an infinite number of values (often seen with height, distance, time)
I Spread: the distance/how spread out/variation of data
I average: a measure of central tendency - or the typical value of all the data together
I Proportion: numerical relationship that compares two things

Set up a statistical enquiry

Design and criticise a questionnaire
I The Question - be clear with the question - don't be too leading jovgemential
e.g. How much pocket money do you get a week?

Responses - do you want closed or open responses? - do any options overlap? - Have I you an option for all responses?

Pictograms, bar and line charts R

| Pictogram

$O=4$ people

- Need to remember a key Visually able to identify mode

- Gaps between the lines - Clearly labelled axes - Scale for the axes - Discrete Data

Draw and interpret Pie Charts
 30 minutes"
-
to 25 and less than the bars

Grouped auantitative data

The use of inequalities shows that this will be a frequency diagram

This is a frequency diagram There are no gaps between

Mutiple method

as 60 goes into 360 - 6 times. Each frequency can be mutipied by 6 to find the degrees (proportion of 360)

discrete data

Remenemera circh has 360°
There were 60 people asked in this survey (Total frequency)

Grouping the data is useful if there is a large spread of data to begin with

Commonly used to show changing over time - The points are the recorded information and the lines join the points.

Line graphs do not need to start from 0
More than one piece of data can be plotted on the same graph to compare data
is possible to make estimates from the line eg temperature at 930 am is $5^{\circ} \mathrm{C}$

Find ond interret the ranoe

The range is a measure of spread
a smaller range means there is less variation in the results - it is more consistent data
a range of 0 means all the data is the same value

Difference between the biggest and smallest values

Shop I has the smalest range - this indicates it has a more consistent flow of

Range of customers $=25-22=3$ (Shop I)

YEAR \& - DEVELOPINg gEOMETRY... Line symmetry and reflection
 @whisto_maths

What do I need to be able

 to do?By the end of this unit you should be able to:

- Recognise line symmetry
- Reflect in a horizontal line
- Reflect in a vertical line
- Reflect in a diagonal line

Keywords

Mirror line: a line that passes through the center of a shape with a mirror image on either side of the line
Line of symmetry: same defintion as the mirror line
Reflect: mapping of one object from one position to another of equal distance from a given ine.
Vertex: a point where two or more-line segments meet.
I Perpendicular: Ines that cross at 90°
I Horizontal a straight line from left to right (parallel to the xaxis)
I Vertical a straight ine from top to bottom (parallel to the y axis)

Rhombus
two lines of symmetry

Mirror line (line of reflection)

Shapes can have more than one line of symmetry...
This regular polygon (a regular pentagon has 5 lines of symmetry)

Reflect horizontally/vertically (1)

Parallebogram
No lines of symmetry
all points need to be the same distance away from the line of reflection

Reflection in the line y axis - this is also a reflection in the line $x=0$

Lines parallel to the x and y axis REMEMBER
Lines parallel to the x-axis are $y=$
Lines parallel to the y-axis are $x=$

Reflect Diagonally (I)

Tum your image
If you tum your image it becomes a vertical horizontal reflection (also good to check your answer this way)

Drawing perpendicular lines

Perpendicular ines to and
from the mirror line can help

