

Developing number sense

What do I need to be able to do?

By the end of this unit you should be able to:

- know and use mental addition/ subtraction
- Know and use mental multipication/ division
- Know and use mental arithmetic for decimals
- Know and use mental arithmetic for fractions
- Use factors to simplify calculations
- Use estimation to check mental calculations
- Use number facts
- Use algebraic facts

Keywords

II
I | Commutative: changing the order of the operations does not change the result
I Associative: when you add or mutiply you can do so regardless of how the numbers are grouped
I I Dividend: the number being divided
I Divisor: the number we divide by
I Expression: a maths sentence with a minimum of two numbers and at least one math operation (no equals sign
Equation: a mathematical statement that two things are equal
Quotient: the result of a division

Mental methods for addition/subtraction

II Mental methods for mutipicication/ division

Mutiplication is commutative
$360-147=360-100-40-7$

- Number lines help for addition and subtraction
- Working in 10 's first aids mental addition/ subtraction

$2 \times 4=4 \times 2$
The order of mutiplication does not change the result

Partitioning can help mutiplication $24 \times 6=20 \times 6+4 \times 6$
$=120+24$
$=\underline{144}$
Division is not associative
Chunking the division can help $4000 \div 25$ "How many 25's in 100 " then how many chunks of that in 4000 .

Mental methods for decimals

II Mental methods for fractions use bar models where possible

I Muttiplying by a decimal <1 will make the original value smaller eg $\times 0.1=\div 10$

Methoos for multipication 12×0.03

Methoods for addition $23+24$

Methods for division $15 \div 005$ Mutiply by powers of 10 until the divisor becomes an integer

£2l left
How much did they have to begin with?

Using factors to simplify calculations
30×16

Estimation

Estimations are useful - especially when using fractions and decimak to check if your solution is possibe

Most estimations round to I significant figure
Estimations are useful - especially when using fractions and decimas to check if your soltion is possible.
$210+899<1200$
This is true because even if both numbers were rounded up, they would reach $300+900$
The correct estimation would be
$200+900=1100$.

Nimber focts

```
use
                                124\times5=620
```

\square
For multiplication, each value that is mutipied or divided by powers of 10 needs to happen to the result

$$
620 \div 12.4=50
$$

For division you must consider the impact of the divisor becoming smaller or bigger. Smaller - the answer will be bigger (tt is being shared into less parts) Bigger - the answer will be smaller (t is being shared into more parts)

1 algebraic facts

The unknown quantity inn't changing but the
add 2 to the total
$a+b+2=7$

Year 7 - REASONNG WTH NUMEER

 @whisto_maths
What do I need to be able to do?

By the end of this unit you should be able to:

- bentify and represent sets
- Interpret and create Venn diagrams
- Understand and use the intersection of sets
- Understand and use the union of sets
- Generate sample spaces for single events
- Calculate the probability of a single event
- Understand and use the probability scale

Keywords

Set: collection of things
Element: each item in a set is called an element
Intersection: the overlapping part of a Venn diagram (OND \cap)
Union: two ellipses that join (OR U)
I Motually Exclusive: events that do not occur at the same time
| Probability: Ilkelihood of an event happering
I I Bias: a buit-in error that makes all values wrong (unequal) by a certain amount, eg a weighted dice
I I Fair: there is zero bias, and all outcomes have an equal likelihood
I Random: something happens by chance and is unable to be predicted

Identify and represent sets

The universal set has this symbol ξ - this means EVERYTHING in the Venn diagram is in this set
a set is a collection of things - you write sets inside curly brackets \{ \}
$\xi=\{$ the numbers between I and 50 inclusive $\}$

Interpret and create Venn diagrams

Mutualy exclosive sets
The two sets have nothing in common No overlap

Union of sets The two sets have some elements in common - they are placed in the intersection

Subset
all of set B is also in Set a so the ellipse fits inside the set

The box

Ground the outside of every Venn diagram will be a box. If an
element is not part of any set it is placed outside an elipse but
inside the box

Union of sets
 Elements in the union
 could be in set A OR set
 B
 The notation for this is $A \cup B$
 \qquad

There are 7 elements that are either a multiple of 5 OR a mutiple of 3 between 1 and 15

This Venn shows the number of elements in each set
$\xi=\{$ the numbers between I Iand 15 noclisve $\}$
$A=\left\{\begin{array}{l}\text { Mutiples of } 5\} \quad B=\{\text { Mutipes of } 3\}\end{array}\right\}$.

The elements in $A \cup B$ are 5, 10, 15, 3, 9, 6, 12

- a sample space represents a possible outcome from an event
- They can be interpreted in a variety of ways because they do not tell you the probability

Probability of a single event

$$
\frac{4}{10}=\frac{40}{100}=0.40=40 \%
$$

ISum of probabilities
Probability is always a value between 0 and I

The probability of getting a blue ball is $\frac{1}{5}$

The sum of the probabilities is 1

The table shows the probabilty of selecting a type of chocolate

Dark	Milk	White
0.15	0.35	

$P($ white chocolate $)=1-0.15-0.35$
$=0.5$

Year 7 - REASONNG WTH NUMEER

Prime numbers and Proof

Multiples The "times table" of a given number all the numbers in this lists below are mutiples of 3 .

$3,6,9,12,15 \ldots$	$3 x, 6 x, 9 x \ldots$
This ist continues and doesn't end	\uparrow
	x could take any value and
Non example of a multiple	as the varable is a mutiple of
4.5 is not a mutliple of 3	3 the answer will aso be a multipl of 3

Keywords

Mutiples: found by mutipling any number by positive integers

Factor: integers that muttiply together to get another number.
Prime: an integer with only 2 factors.
I| Conjecture: a statement that might be true (based on reasoning) but is not proven
II Counterexample: a special type of example that disproves a statement.
II Expression: a maths sentence with a minimum of two numbers and at least one math operation (no equals sign)
I HCF: highest common factor (biggest factor two or more numbers share)
I I LCM: lowest common multiple (the first time the times table of two or more numbers match)

Prime numbers

Integer

- Only has 2 factors

The first prime number
The only even prime number

Leam or how-to quick recall...
$2,3,5,7,11,13,17,19,23,29 \ldots$
i Square and triangular numbers
Square numbers
odd even odd
Representations are useful - an extra counter number
Common multiples and LCM
LCM - Lowest common multiple
LCM of 9 and 12
$9 \quad 9,18,27,36,45,54$
$12 \quad 12,24,36,48,60$

Comparing fractions

$\frac{3}{5}$ and $\frac{7}{10}$
Conjectures and cOu
Conjecture

$1,4.4$
The numbers ine sequence
are doubling each time.

a patem that is noticed for many cases

Product of prime factors

Common factors and HCF

- Common factors are factors two or more numbers share

HCF - Highest common factor
HCF of 18 and 30
II

Common factors
(factors of both numbers)
1,2,3,6

6 is the biggest factor they share
I is a common factor of all numbers

Representations are useful to understand a square number n^{2}
$1,4,9,16,25,36,49,64 \ldots$

$$
1,3,6,10,15,21,28,36,45 \ldots
$$

