## yeAr 9 - reasonng with geowerry... Solving ratio \& proportion problems

## Keywords

## What do I need to be able to do?

By the end of this unit you should be able to:

- Solve problems with direct proportion
- Use conversion graphs
- Solve problems with inverse proportion
- Solve ratio problems
- Solve 'best buy' problems

Proportion: a comparison between two numbers
Ratio: a ratio shows the relative size of two variables
Direct proportion: as one variable is mutiplied by a scale factor the other variable is mutiplied by the same scale factor.
Inverse proportion: as one variable is mutiplied by a scale factor the other is divided by the same scale factor
as one variable changes the other changes at the same rate.

This is a multipicative change
4 cans of pop $=£ 2.40$


This muttipler is the same In the same way that this would be for ratio


Sometimes this is easiest if you work out how much one unit is worth first eg 1 can of pop $=£ 0.60$

Conversion Graphs compare two variables

## This is always a straight line because as one variable increases so does the other at the same rate

To make conversions between units you need to find the point to compare - then find the associated point by using your graph.
Using a ruler helps for accuracy
Showing your conversion lines help as a "check" for solutions

Inverse Proportion as one variable is mutiplied by a scale factor the other is divided by the same scale factor

Examples of inversely proportional relationships

Time taken to fill a pool and the number of taps running

Time taken to paint a room and the number of workers
$T$ is inversely proportional to $G$. When $T=2$ then $G=20$



Best Buys Have a directly proportional relationship
To calculate best buys you need to be able to compare the cost of one unit or units of equal amounts

Shop $\mathbf{A}$
4 cans for $£ 120$
$\downarrow £ 1.20 \div 4 \quad \pm 0.93 \div 3$

Cost per item
I can is $£ 0.3$ Or 30p
| can is $£ 0.31$ | or $31 p$

Shop Ais the best value as it is ip cheaper per can of pop


## Shop A

4 cans for $£ 120$

Cost per
pound

# YEAR 9 - REASONING WITH GEOMETRY. Enlargement \& Similarity 

## Keywords

## What do I need to be able to do?

By the end of this unit you should be able to:

- Recognise enlargement and similarity
- Enlarge a shape by a positive SF
- Enlarge a shape from a point
- Enlarge a shape by a fractional SF
- Work out missing sides and angles in a pair of similar shapes.

Similar Shapes: shapes of different sizes that have corresponding sides in equal proportion and identical corresponding angles.
Scale Factor: the muttiple describing how much a shape has been enlarged
Enlarge: to change the size of a shape (enlargement is not always making a shape bigger) Corresponding: objects (or sides) that appear in the same place in two similar situations. Image: the picture or visual representation of the shape

## Recognise enlargement $\varepsilon$ similarity

Shapes are similar if all pairs of corresponding sides are in the same ratio
These shapes are similar because all sides are increased by the same ratio
$\square$
Enlargements are similar shapes with a ratio other than I

Enlarge by a positive scale factor
With a scale factor larger than I it makes the shape bigger


Positive fractional scale factor
With a scale factor between 0 and 1 it makes the shape smaller
$\square$

$$
\xrightarrow{\text { Scale Factor of } \frac{1}{5}}
$$

$$
\underset{\sim}{\text { E }}
$$



12 cm



Enlarge a shape from a point


Scale the distance between the point of enlargement and each corresponding vertices


Mutiply the distance from the centre of corresponding vertices by the scale
factor along the ray

Calculations in similar shapes

Don't forget that properties of shapes don't change with enlargements or in similar shapes

The two trapezium are similar find the missing side and angle


Corresponding sides identify the scale factor

$$
\frac{12}{6}=2
$$

Scale Factor $=\mathbf{2}$

Cakulate the missing side Length (corresponding side) $\times$ scale factor $2 \mathrm{~cm} \times 2$ $x=4 \mathrm{~cm}$

Enlargement does not change angle size
Cakulate the missing angle Corresponding angles remain the same $130^{\circ}$


## What do I need to be able

 to do？By the end of this unit you should be able to：
－Use square and cube roots
－Identify the hypotenuse
－Calculate the hypotenuse
－Find a missing side in a Right angled triangle
－Use Pythagoras＇theorem on axes
－Explore proofs of Pythagoras＇theorem．

## Keywords

Square number：the output of a number mutiplied by itseff
Square root：a value that can be mutiplied by itseff to give a square number
Hypotenuse：the largest side on a right angled triangle．Always opposite the right angle．
Opposite：the side opposite the angle of interest
adjacent：the side next to the angle of interest

Squares and square roots $R$


If a triangle is right－angled，the sum of the squares of the shorter sides will equal the square of the hypotenuse．

$$
a^{2}+b^{2}=\text { hypotenuse }{ }^{2}
$$

eg $a^{2}+b^{2}=$ hypotenuse $^{2}$ $3^{2}+4^{2}=5^{2}$
$9+16=25$
ーーーーー

## Calculate the hypotenuse



Hypotenuse
$a^{2}+b^{2}=$ hypotenuse ${ }^{2}$

## I Substitute in the

values for $a$ and $b$
$3^{2}+6^{2}=$ hypotenuse ${ }^{2}$
$9+36=$ hypotenuse $^{2}$
$45=$ hypotenuse ${ }^{2}$
2 To find the hypotenuse
square root the sum of the squares of the shorter sides．

## Calculate missing sides


（a） 12 cm

$$
a^{2}+b^{2}=\text { hypotenuse }{ }^{2}
$$

$$
12^{2}+b^{2}=15^{2}
$$

I Substitute in the values you are given
$144+b^{2}=225$
$-144$
Rearrange the equation by subtracting the shorter square from the hypotenuse squared

Square root to
$6.71 \mathrm{~cm}=$ hypotenuse

Substituting the numbers into the theorem shows that this is a right－angled triangle


The hypotenuse is aways the longest side on a triangle because it is opposite the biggest angle．

Pythagoras＇theorem on a coordinate axis


The ine segment is the hypotenuse

$$
a^{2}+b^{2}=\text { hypotenuse }^{2}
$$

The lengths of $a$ and $b$ are the sides of the triangle．

