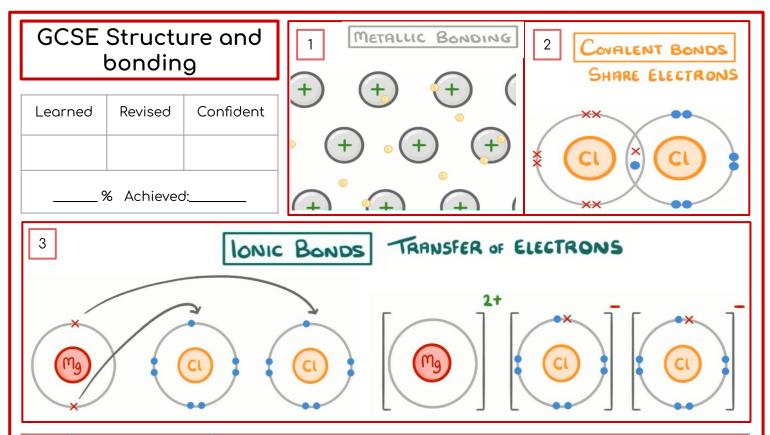
	GCSE Ator structur		ROTONS RELATIVE MASS OF	1	6	1 _1	
Learned Revised Confident		t NEUTRAL NEUTRONS	Nu		MEGATIVE ELECTRONS MASS 2,000 × SMALLER VERY SMALL		
	% Achieved		RELATIVE MASS OF	1	6	- 0	
N°	Keyword	þ		Definition			
2	Atom		The s	mallest part of ar	n element	that can exist	
3	Elemen	t	A sub	stance made fron	n only one	e type of atom	
4	Compou	nd	A substance ma	ade from two or m are chemic		rent types of atoms that ed	
5	Mixture	2	Two or more diff		that are ided	mixed but not chemically	
6	lon		A charged particle formed from losing or gaining electrons				
7	Isotope	2	Atoms of the same elements, with the same number of protons but a different number of neutrons				
8	Electronic conf	guration	How the electrons are arranged in the shells on an atom				
9	Relative atom	c mass	The number of protons and neutrons in the nucleus of an atom				
10	Atomic (proton)	number	The number of protons in the nucleus of an atom				
11	63 Cu 29 29	u Sur	m of (ISOTOPE ABUNDAN	NCE X ISOTOPE MIASS)	(69.2 ×	≤ 63) + (30.8 × 65)	
12	COPPER-63 COPPE	R-65 .8%	Sum of Abundan Isotopes	ICE OF ALL	(59.2 + 30.8	
Sub	patomic particle	Re	elative mass	Relative cho	arge	Location in atom	
	Proton		1	+1		Nucleus	
	Neutron		1	0 / neutro	วไ	Nucleus	
	Electron		1/2000	-1		Shells	
N°				Fact			
13	Mixtures car		separated through atography and cry			as filtration, distillation, cannot.	
14	When an el	ement lose:		s a positive ion, w egative ion.	hen it gai	ns electrons it forms a	

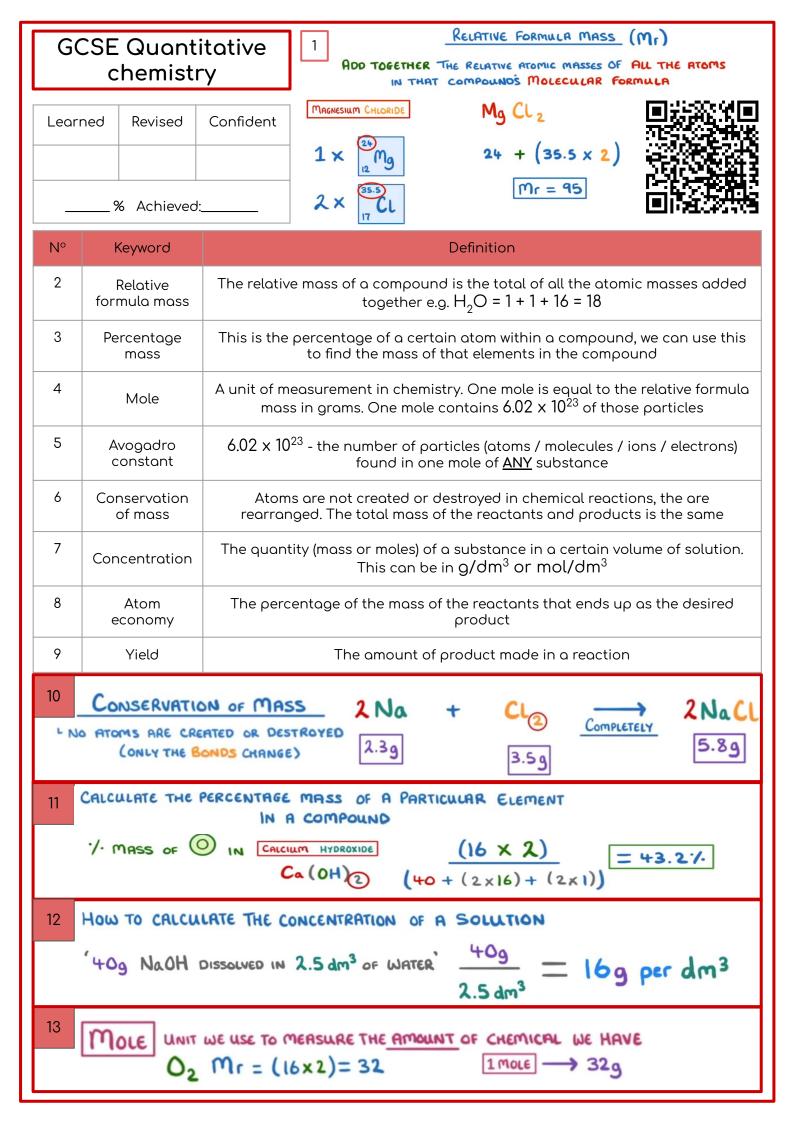
	Confident % Achieved:																
N°)	Ke	yword							De	efinitio	n					
2		G	iroup					Th	e colu	ımns i	n the	perioc	lic tab	ole			
3		P	eriod						The ro	ws in t	the pe	eriodic	table	ò			
		т	Fond				oottor	n that				rooctiv	vity of	- hoilin		nt	
4	4 Trend				A pattern that can be seen e.g. reactivity or boiling point												
5		Pro	operty	/		H	ow a c	hemic	al ber	naves	e.g. dı	uring c	a cher	nical r	eactic	n	
1	2			6 Key			1 H hydrogen					3	4	5	6	7	0 4 He helium 2
	9 Be beryllium 4 24 Mg magnesium		ato	ve atomi omic syn		r		1				11 B boron 5 27 Al aluminium	12 C carbon 6 28 Si silicon	14 N nitrogen 7 31 P phosphorus	16 O oxygen 8 32 S sulfur	19 F fluorine 9 35.5 CI chlorine	20 Ne neon 10 40 Ar argon
11 39 K	12 40 Ca	45 Sc	48 Ti	51 V	52 Cr	55 Mn	56 Fe	59 Co	59 Ni	63.5 Cu	65 Zn	13 70 Ga	14 73 Ge	15 75 As	16 79 Se	17 80 Br	18 84 Kr
potassium 19	calcium 20	scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25		cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32		selenium 34	bromine 35	krypton 36
85 Rb	88 Sr	89 Y	91 Zr	93 Nb	96 Mo	[98] Tc	101 Ru	103 Rh	106 Pd	108 Ag	112 Cd	115 In	119 Sn	122 Sb	128 Te	127 I	131 Xe
rubidium 37	strontium 38	yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
133 Cs	137 Ba	139 La*	178 Hf	181 Ta	184 W	186 Re	190 Os	192 Ir	195 Pt	197 Au	201 Hg	204 TI	207 Pb	209 Bi	[209] Po	[210] At	[222] Rn
caesium 55	barium 56	lanthanum 57	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
[223] Fr	[226] Ra	[227] Ac*	[261] Rf	[262] Db	[266] Sg	[264] Bh	[277] Hs	[268] Mt	[271] Ds	[272] Rg	[285] Cn	[286] Nh	[289] Fl	[289] Mc	[293] Lv	[294] Ts	[294] Og
francium 87	radium 88	actinium 89	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	darmstadtium 110	roentgenium 111	copernicium 112	nihonium 113	flerovium 114	moscovium 115	livermorium 116	tennessine 117	oganesson 118
Nº	87 88 89 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 N° Fact																

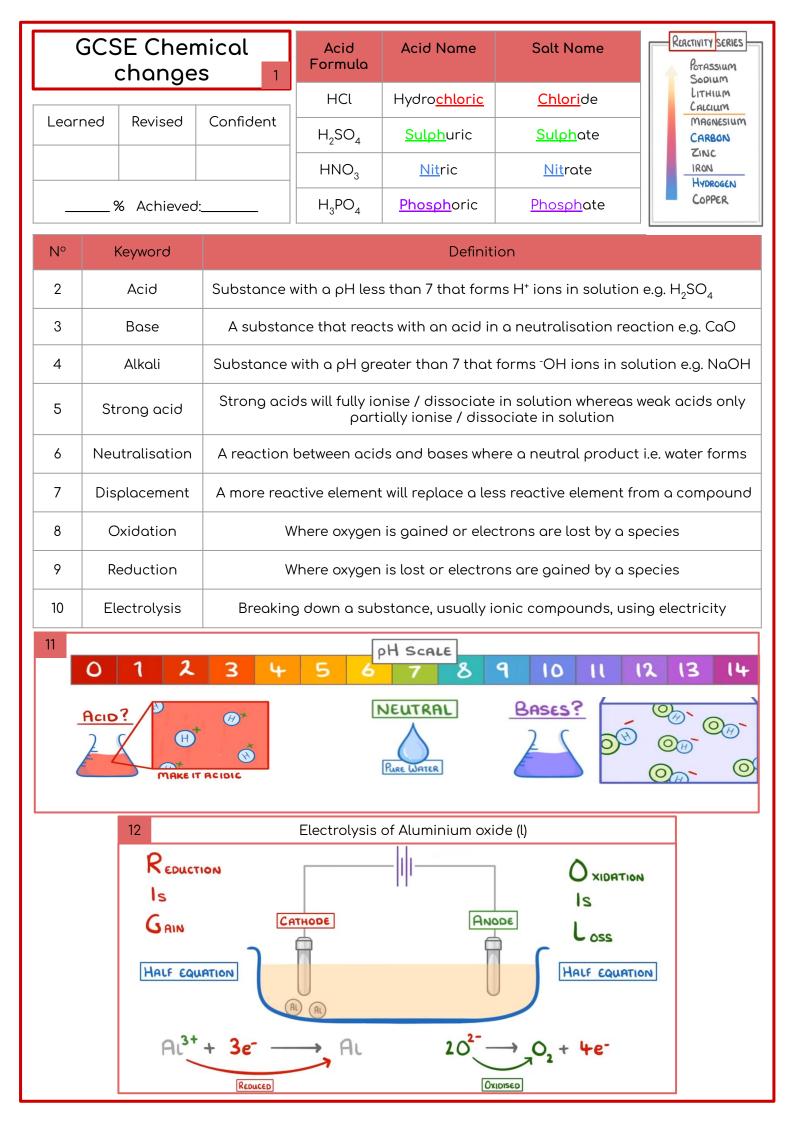
	Elements in the same group all have similar properties, this is because they have the same number of electrons on their outer shell	
--	--	--


Elements in the same period have the same number of electron shells

Down a group: Atomic radius increases; the number of electron shells increases; the outer shell/electron is further away from the nucleus; nuclear attraction decreases. These 4 factors affect the reactivity of the elements in that group

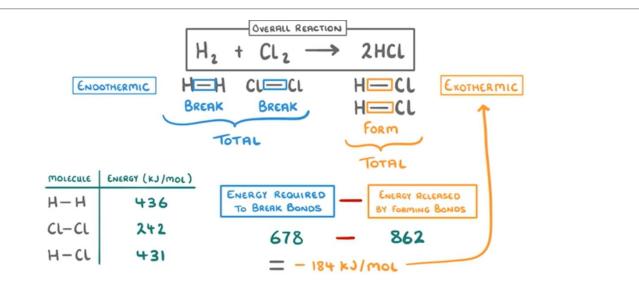
7


8


The boiling/melting points og group 7 and 8 increase as you go down the group. This is
 because the atoms/molecules get bigger and so they have more intermolecular forces to overcome.

N°	Keyword	Definition
4	Delocalised electron	An electronic that isn't associated with an atom or bond, it is free to move through the structure
5	Metallic bond	Giant structure of positive metal ions in a sea of delocalised electrons- forming strong electrostatic forces of attraction
6	lonic bond	Strong electrostatic forces of attraction between oppositely charged ions (formed from the transfer of electrons)
7	Covalent bond	Shared pair(s) of electrons between non-metal atoms
8	Electrostatic forces	Strong forces of attraction between oppositely charged particles e.g. ions and/or electrons
9	Intermolecular forces	Weak forces of attraction that occur between molecules.

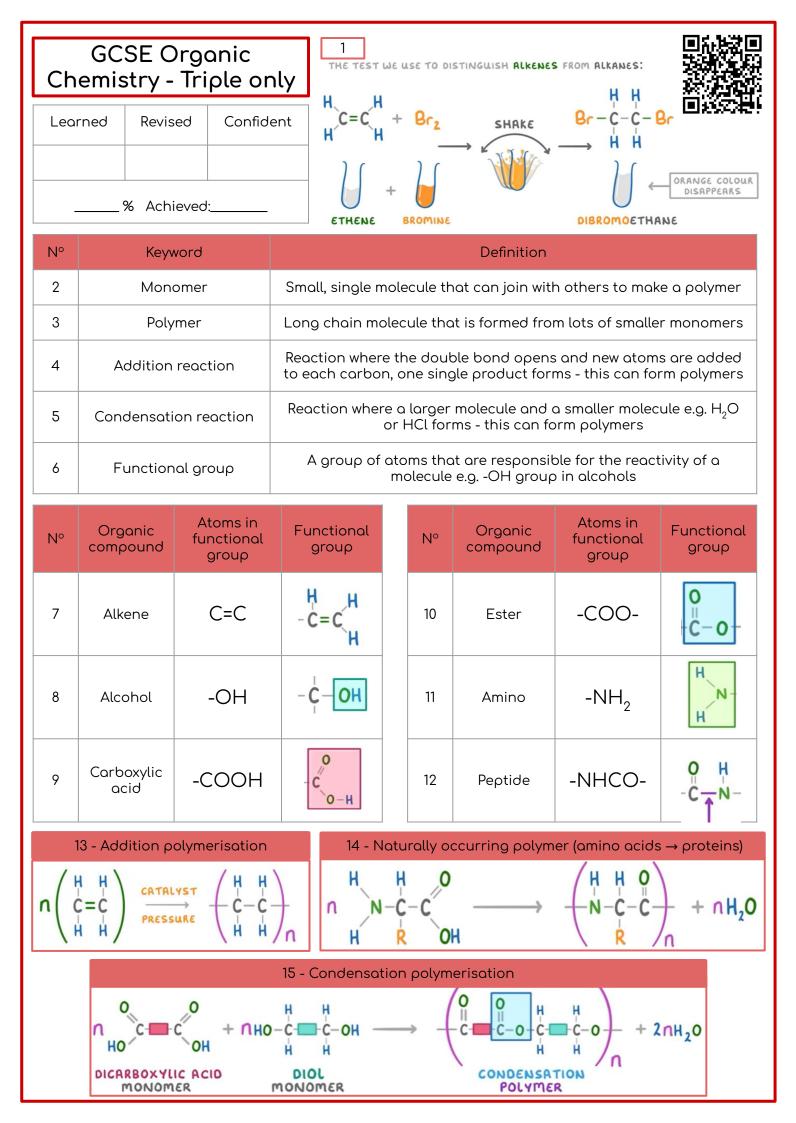
N°	Fact
10	In bonding, atoms look to gain a full outer shell of electrons. They can lose electrons to drop down a shell, gain to fill their shell or share electrons between their outer shell
11	In ionic bonding, the metal atom loses electron(s) to become a positive ion, the non-metal gains the electron to become a negative ion. These ions then form a giant structure.
12	In covalent bonding, atoms share pairs of electrons to fill their outer shells. This can form a simple molecule (e.g. H ₂ O) or a giant structure like diamond.
13	The properties of a substance relate to its structure and bonding. For example, giant structures will generally have high melting and boiling points whereas small, simple structures will have low melting and boiling points



	GCSE Ene change					
Lear	_earned Revised Confident% Achieved:		activation energy reactants reaction progress	reactants reactants overall energy change products reaction progress		
N°	° Keyword		Definition			
3	Endother	mic	A reaction that takes in energy from the surroundings			
4	Exothern	nic	A reactions that releases energy to the surroundings			
5	5 Activation energy		Minimum amount of energy required to start a reaction			
6	Overall energy change		The difference between the energy of the reactants and the products			
7	Catalys	st	Provides an alternate reaction pathway with a lower activation			

N°	Facts				
8	Bond breaking is an endothermic process, it requires energy				
9	Bond making is an exothermic process, it releases energy				
10	An endothermic reaction has a positive overall energy change - more energy was taken in than was released				
11	An exothermic reaction has a negative overall energy change - less energy was taken in than was released				

energy to speed up the reaction


N°	Overall energy change calculations (HIGHER)
12	Complete these questions using a simple T-table with "Break" and "Make" as headings. Tick off the bonds as you count them. Total break - Total make = Overall energy change

		SE Rate		FOR PARTICLES TO REACT, THEY HAVE TO COULDE WITH EACH OTHER WITH SUFFICIENT ENERGY INCREASE THE RATE OF REACTION:				
	ľ	reactio	n	I. AMOUNT OF ENERGY THE PARTICLES HAVE: (NOTHING WILL HAPPEN)				
Lear	arned Revised Confident		Confident	CONCENTRATION				
				* HOW OFTEN THE PARTICLES COLLIDE				
	9	6 Achieved	4.	NOT ALL COLLISIONS ARE SUCCESSFUL				
	^	Achieved		MORE OFTEN SUCCESSFUL COLLISIONS SURFACE AREA				
N°	Facts							
2	Increasing the temperature increases the rate of reaction. Particles have more energy and so move more and faster so the frequency of collisions increases - they also collide with more energy meaning more successful collisions							
3	Increasing the concentration/pressure increases the rate of reaction. There are more particles in the same volume and so the frequency of collisions increases.							
4	Increasing the Surface area increases the rate of reaction. There are more exposed particles and so the frequency of collisions increases.							
5	Adding a catalyst to a reaction increases the rate of reaction. The catalyst provides an alternate reaction pathway with a lower activation energy so more particles have successful collisions (with enough energy to overcome activation energy)							
6	There are generally three factors we can use to,measure rate of reaction: measure the volume of gas produced; measure loss in mass; measure the turbidity (cloudiness) if a solid is produced							
				Calculating rate of reaction				
7			QUATITY OF RE	EACTANTS USED 8 QUANTITY OF PRODUCTS FORMED				
RATE	OF READ	TION =		TAKEN (S) RATE OF REACTION TIME TAKEN (S)				
	Mean I	rate of read	ction (H + F)	Rate of reaction at a specific time (H only)				
	VER A CERTAIN PERIOD HAT IS THE MEAN RATE Z OF REACTION IN THE FIRST 1200 cm^3 $\frac{1}{9}$ $300 $							
of Ri IN TH 3 m 120 3 m (180	HE MEAN RATH EACTION HE FIRST INNUTES ?' DO CM ³ DINUTES SECONDS)	Vol. of Hypaseen	1 2 3 TIME (MINUTES)	WHAT IS THE RATE OF REACTION AT 2 MINUTES?' 4 4 4 4 4 4 4 4 4 4 4 4 4				
of Ri IN TH 3 m 120 3 m (180	HE MEAN RATH EACTION HE FIRST INNUTES ?' DO CM ³ DINUTES SECONDS)	Vol. of Hypaseen		WHAT IS THE RATE OF REACTION AT 2 MINUTES?' 4 4 4 4 4 4 4 4 4 4 4 4 4				
0F RI IN TH 3 M 120 3 m (180 6.	HE MEAN RATH EACTION HE FIRST INNUTES ?' DO CM ³ DINUTES SECONDS)	Vol. of Hypaseen	R Some chemic	What is the Rate of Reaction at 2 Minutes?' 600 2mins 50s (170) 170 $= 3.53 \text{ cm}^3/\text{S}$				
0F RI IN TH 3 M 120 3 m (180 6.	HE MEAN ART ERACTION HE FIRST INNUTES ?' DO cm ³ NINUTES SECONDS) 67 cm ³ /	Vol. of Hyperoce N	R Some chemic A rever	Reversible reactions (\Rightarrow) and equilibrium Reversible reactions (\Rightarrow) and equilibrium				

GCSE Organic chemistry		$\begin{array}{cccccccccc} H & H & H & H & H & H & H & H & H & H $				
Learr	ned Revised Confident	METHANE ETHANE PROPANE BUTANE CH4 C2H6 C3H8 C4H10				
% Achieved:		HOMOLOGOUS SERIES'				
N°	Keyword	Definition				
1	Hydrocarbon	A compound that contains only hydrogen and carbon				
2	Alkane	The simplest hydrocarbon containing only single bonds. CnH2n+2				
3	Saturated	A molecule that only contains single bonds e.g. Alkanes				
4	Alkene	An unsaturated hydrocarbon. CnH2n				
5	Viscosity	How runny or gloopy a substance is				
N°	F	ractional distillation				
6	Crude oil is heated to evaporation The vapors pass into the column which has a temperature gradient Longer chains cool and condense lower in the column Shorter chains cool and condense higher in the column Longer chains have higher boiling points Longer chains have higher boiling points as they have more intermolecular forces to overcome					
N°	Focts					
7	We can test for alkenes using bromine water. It goes from orange to colourless					
8	The longer the hydrocarbon chain, the higher the viscosity (more goopy)					
9	The longer the hydrocarbon chain, the higher the boiling point					
10	The longer the hydrocarbon chain, the lower the flammability					
N°		Cracking hydrocarbons				
11	Cracking uses steam/hi	gh temperature and a catalyst to break long chain alkanes into a shorter alkane and at least one alkene				

shorter alkane and at least one alkene

(GCSE Chemic analysis	CONTRINS ONLY ONE TYPE OF					
Learı	ned Revised Co	Denfident					
	% Achieved:	MIXTURES THAT HAVE BEEN PREPARED USING A SPECIFIC FORMULA					
N°	Keyword	Definition					
1	Pure	A substance that contains only one type of compound or element					
2	Formulation	A mixture that has been prepared using a specific formula for a specific purpose					
3	Chromatography	A physical technique used to separate substances with different solubilities from a liquid mixture					
4	Mixture	Two or more different substances that are mixed but not chemically bonded					
5	Mobile phase	The phase in chromatography that moves, this is usually the solvent					
6	Stationary phase	The phase in the mobile phase that does not move, fro example, the paper in paper chromatography					
7	Solute	The part of a solution that dissolves in the solvent, for example, the salt in seawater					
8	Solubility	A measure of how soluble a substance is in a certain liquid					
9	Solvent	The liquid that the solute dissolves into to form a solution					
10	Rf Value	This is a ratio of how far the solute has traveled compared to the solvent. We can use this to identify unknown substances					
11	11 'RE VALUE' = DISTANCE TRAVELLED BY THE SUBSTANCE 6 = 0.6						
	1	Testing for common gases					
		N° Gas Test Result					

			040	rest	Resource
1		12	Hydrogen	Insert a lit splint	Squeaky pop noise
1	1	13	Oxygen	Insert a glowing splint	Relights the splint
1	OCM	14	Chlorine	Insert damp litmus paper	Bleaches the litmus paper
•	<u> </u>	15	Carbon dioxide	Bubble through lime water	Lime water turns cloudy
		6cm	12 13 14	12Hydrogen13Oxygen14Chlorine15Carbon	12HydrogenInsert a lit splint13OxygenInsert a glowing splint14ChlorineInsert damp litmus paper15CarbonBubble through lime water

1(

GCSE Chemical analysis - triple only						
Leo	rned Revise	ed Confident				
	Achie		$\longrightarrow Baso_{(S)}$			
Ч						
N°	Keyword	Defir	nition			
1	Anion		ained electrons and become negatively rged			
2	Cation		An atom or group of atoms that have lost electrons and become positively charged			
3	Flame test	A qualitative identification technique where samples are heated and the metal ions present are identified by characteristic flame colours				
4	Halide	A halide ion is an ion formed when a halogen atom gains one electron. Halide ions have a single negative charge.				
5	lon	Electrically charged particle, formed when an atom or molecule gains or loses electrons.				
6	Precipitate		nen a dissolved substance (aq) reacts to ble substance (s)			
N°	Metal ion	Flame test colour	Precipitate colour with NaOH (aq)			
7	Lithium	Crimson red				
8	Sodium	Yellow				
9	Potassium	Lilac				
10	Calcium	Orange-red	White			
11	Copper	Green Blue				
12	Iron (II)	Green				
13	Iron (III)		Brown			
14	Aluminium		White - Redissolved in excess NaOH			
15	Magnesium		White			
16	We can distinguish between Ca, Al and Mg using excess NaOH to identify Al and then the flame test to identify the Ca with its orange-red flame					

GCSE Chemistry of the atmosphere			BURNING LOADS OF FOSSIL FUELS	· Farm (ANIMALS PRODUCE METHANE DURING DIGESTION	
Leorn	Learned Revised Confident		CHOPPING DOWN LOADS OF TREES		HUGE AMOUNTS OF WASTE + RELEASES METHANE AS IT DECOMPOSES	
N°	Keyword		D	efinition		
1	Atmosphere	layers of	layers of gases that surround the Earth. The main gases are nitrogen, oxygen and carbon dioxide.			
2	Crude oil	Mixture	Mixture of hydrocarbons, mainly alkanes, formed over millions of years from the remains of ancient dead marine organisms.			
3	Evidence		Information or material that shows something is true.			
4	Sedimentary	Rocks the	Rocks that are formed through the deposition of sediments, eg limestone and sandstone			
5	Global warming		The increase of the overall average global temperature			
6	Carbon footprint	The t	The total amount of greenhouse gases a person, product or event is responsible for			
7	Greenhouse gases	The gase	The gases responsible for global warming - carbon dioxide, methane, nitrous oxide and water.			
8	Greenhouse effect	Retention of heat in the atmosphere caused by a build-up of greenhouse gas				

Pollutant A toxic chemical or object that causes damage to the land, air or water.

Atmospheric pollutants

9

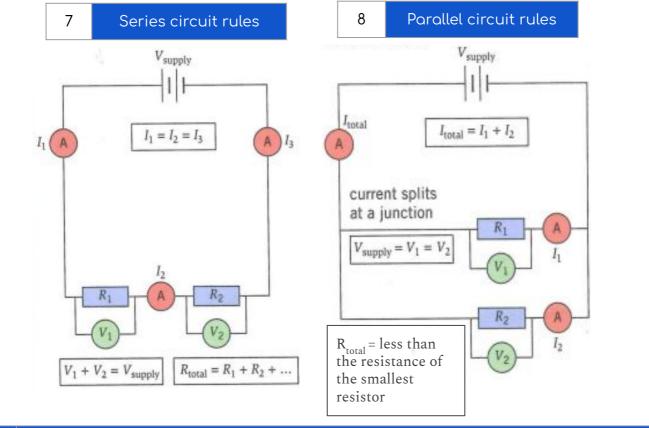
N°	Fact
11	The evolution of the atmosphere is only a theory. This is because there is a lack of evidence <u>NOT</u> because no-one was there
12	The main effects of global warming are: flooding from sea level rise; extreme weather such as hurricanes; changes in rainfall such as storms and droughts and extinction due to all of this
13	The Earth needs certain level of greenhouse gases to be habitable. Without greenhouse gases the Earth would be too cold to live on
14	Carbon footprints are difficult to measure due to the large number of factors that need to be considered and the complexity of the greenhouse effect in the atmosphere.

	GCSE Us resource	•	1 FRESH WATER NEED TO TREAT IT> (SAFE TO DRINK) (1) WIRE MESH		
Lear	ned Revised	Confident	(3) STERILISE IT (KILL ANY MICROBES) FILTER OUT ANY BIG THINGS		
	% Achieved		BED OF SAND AND GARVEL		
3°	Keyword	J	(FILTERS OUT OTHER SMALLER BILL Definition		
2	Finite resource	A resource that can only be used once and is in limited supply e.g. crude oil			
3	Natural resource	MAterials t	hat have been made through the formation of the world e.g. metal		
4	Renewable resource	Resources v	hich will not run out in the foreseeable future, they are being made faster than they are used		
5	Synthetic resources	A mc	aterial made by a chemical process, not naturally occurring.		
6	Desalination	The re	emoval of salt from water. This is an energy-intensive process.		
7	Sustainable	An activity which does not consume or destroy resources or the environment for future generations			
8	Potable water	Water that contains a low amount of microbes and dissolved salts and has a neutral pH.			
9	Bioleaching		Using bacteria to extract metals from their ores.		
10	Phytomining	Using plants to absorb metal compounds from the ground through their roo The plants are then burned to produce an ash containing a high concentration of the metal compounds.			
11	Life cycle assessment	(LCA) A 'cra	dle-to-grave' analysis of the impact of a manufactured product on the environment.		
12		G AND PROCESSIN	IG 2. MANUFACTURING AND PACKAGING 3. USING YOUR PRODUCT 4. DISPOSING OF IT		
N°	Fact				
13	Potable water <u>isn't</u> pure! Potable water can contain a small amount of dissolved salts and microbes.				
14	The UK sources potable water from groundwater e.g. reservoirs. Hotter countries such as Australia have to desalinate sea water using distillation or reverse osmosis.				
15	There are some issues with life cycle assessments. It can be difficult to judge the impact of aspects such as pollutants and the process can be biased. The LCA may not be fully objective				

GCSE Energy 1				
Learned	Revised	Confident	GRAVITATIONAL FIELD	CHERGY HELD IN AN ALREADY-STRETCHED SPRING
				ANN S
% Achieved:			MOVEMENT OR MOTION FROM BREAKING ATOMS	HELD IN CHEMICAL BONUS

N°	Keyword	Definition
2	Conduction	The process by which vibrating particles in solids transfer energy to neighbouring particles.
3	Convection	Where more energetic particles in fluids move apart, become less dense, and rise through the fluid (from hot to cold).
4	Efficiency (energy)	The proportion of input energy transfer which is usefully transferred.
5	Efficiency (power)	The proportion of input power which is usefully output.
6	System	An object or group of objects.
7	Work done	Energy transferred.

N°	Facts
8	Energy can be transferred usefully, stored, or dissipated, but never created or destroyed
9	Specific heat capacity is the amount of energy needed to raise the temperature of a substance of a 1kg substance by 1°C
10	Efficiency can be increased by streamlining and lubricating.
11	No device is 100% efficient and the wasted energy is usually transferred to useless thermal energy stores.
N°	Equations to learn
12	Kinetic energy = 0.5 x mass x speed ²
13	Gravitational potential energy = mass x gravitational field strength x height
14	Power = <u>energy transferred</u> time
15	Power = <u>work done</u> time
16	Efficiency = <u>useful power output</u> total power input
17	Efficiency = <u>useful output energy transfer</u> total input energy transfer


GCSE Energy 2			1	Power station	
Legrned Revised Confident		turb	am is used to turn a vine <u>OR</u> the turbine is ned directly (eg. by		
				wind)	
% Achieved:					The turbine is attached to a generator, which
			Hec burn	at is produced (eg. by ning fossil fuels) to heat water.	generates electricity.

N°	Keyword	Definition			
2	Biofuels	Energy released from plant products or animal dung by burning			
3	Finite	A limited amount.			
4	Fossil fuels	Energy released by the burning of coal, oil and natural gas.			
5	Geothermal power	Uses energy in the thermal stores of hot, underground rocks to generate electricity, or to heat water directly.			
6	Hydroelectricity	Electricity is generated by water moving through turbines in a dam			
7	Non renewable	An energy resource that is finite (cannot be replaced as quickly as it is used) - it will run out			
8	Nuclear fuels	Releases energy by the nuclear fission of uranium or plutonium.			
9	Reliable	Consistent in quality - can be trusted. E.g. wind power isn't reliable - it isn't always windy.			
10	Renewable	An energy resource that can be replaced as quickly as it is being used - it will not run out			
11	Solar cells	Generate electric currents directly from the Sun's radiation.			
12	Tidal barrages	Electricity is generated by harnessing the movement of the tides.			
13	Wave power	Electricity is generated by harnessing the movement of water waves by the coast.			
14	Wind power	The wind turns a turbine directly to generate electricity.			

N°	Focts
15	Energy resources are used for generating electricity, heating and transport.

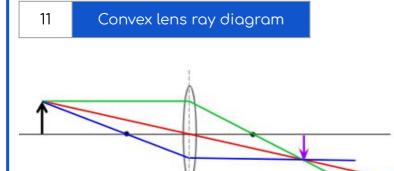
Ģ	GCSE Elect	ricity	—a_a— Switch (open)	–⊗– Lamp	1 Cir	rcuit symbols
Learr	Learned Revised Ca		Switch (closed)	Fuse	Diode	
	% Achieved:		Cell → Bottery	Voltmeter Ammeter	Resistor Variable resistor	
N°	Keyword		Definition			
2	Current	Flow of	[:] charge, measu	red in ampere	es (A)	
3	Potential difference		sure of how muc it, measured in		ansferred be	tween two points in
4	Resistance		ng that opposes ns in the wire), n			ectrons colliding
5	Series circuit Every c		component is co	onnected in a	line (one "loo	ο ¨)

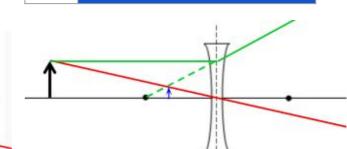
Э	Series circuit	Every component is connected in a line (one loop)
6	Parallel circuit	Every component is connected to the battery separately (it has multiple "loops")

N°	Equations to learn
9	charge flow = current × time
10	potential difference = current × resistance

GC	SE Electricit	y (2) 1 Earth wire Live wire			
Learr	ned Revised Co	nfident Neutral wire Fuse			
	% Achieved:	Outer insulation Cable grip			
N°	Keyword	Definition			
2	Alternating current	Current that changes direction			
3	Direct current	Current that flows in one direction only			
4	Step up transformer	Increases the potential difference and decreases the current (reducing resistance and heat loss, and increasing efficiency)			
5	Step down transfer	Decreases the potential difference to a safe level (230V for homes).			
6	The national grid	A network of cables and transformers that links electricity power stations to consumers			
N°		Facts			
7	UK alternati	ng current has a potential difference of 230 V and a frequency of 50 Hz			
8	The National Grid	Power station High voltage transmission lines Consumers, for example homes, factories and shops Step-up transformers			
		196799999999999999999999999999999999999			
N°		Equations to learn			
9		power = potential difference × current			
10		power = (current)2 × resistance			
11		energy transferred = power × time			
ΙZ	E	energy transferred = charge flow × potential difference			

GC	SE Particl	e model	1 Heating Meltin	Boiling		
Learr	ned Revised	Confident				
	% Achieve	d:	Solid	Liquid Gas Condensing Cooling		
N°	Keyword		Definition	•		
2	Density	A measure a	of the "compactness" of a subs	stance.		
3	Evaporating		cles at the surface of a liquid s Irn into gas particles - this ha			
4	Internal energy	The total er potential er	nergy that a system's particles nergy stores	have in their kinetic and		
5	Pressure	Force per u	nit area			
6	Specific latent heatEnergy required to change the state of 1 kg of a substance withou change in temperature (SLH fusion is for melting/freezing, SLH vaporisation is for boiling/condensing).					
7	Sublimation	Change in s	state from a solid to a gas (with	nout becoming a liquid)		
	Solid		Liquid	Gas		
8		rangement ching)	Irregular arrangement (touching)	Irregular arrangement (not touching)		
9	Vibrate in fi	ked positions	Free to move	Random speeds and random directions		
10	Lowest	energy	Medium energy	Highest energy		
11	Stronge	est forces	Medium forces	Weakest forces		
N°			Facts			
12	Substances change state when they have enough energy to overcome the bonds holding the particles together.					
13	The temperature of a gas is related to the average energy in the kinetic energy stores of the gas particles.					
N°			Equations to learn			
14			density = <u>mass</u> volume			

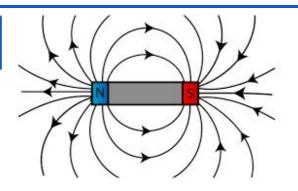

G	GCSE Atomic structure and radiation			N°	Particle	Mass	Charge	Electron	
Lec	arned Revised	d Confi	dent	1	Proton	1	+1	Proton Neutron	
					Veutron	1	0		
	% Achiev	/ed:		3 6	Electron	1/2000	-1		
N°	Keywor	d				Defir	nition		
4	Activity		he num	iber of r	nuclei of a	a sample	that dea	cay per s	second
5	Contamina	tion H	las unw	anted ro	adioactiv	re atoms	on or in	it	
6	Half life			it takes ple to h		number d	of nuclei	of a rad	ioactive isotope
7	lon	А	charge	ed partio	cle (an at	om that	has gain	ed/lost	electrons)
8	Irradiation	E	xposure	e to rad	iation				
9	Isotope	А	n eleme	ent with	a differe	nt numb	er of neu	itrons	
	Dalton J.J. THOMSO 1803 😨 190		THERFORD	NIELS BOHR	of alpha p		t+	nucleus	most alpha particles are not deflected
N°	Type of rad	iation		nge in nucleus	Ionisir	ng powe	r Rang	e in air	Stopped by
12	OC alpha part (two protons a neutron	and two	nucleu two pro and tw neutro	0	highest power	ionising	travels centim in air		stopped by a sheet of paper
13	beta particle prote			es into a and an	high ior power	iising	travels in air	≈lm	stopped by a few millimetres of aluminium
14	gamma radi (short-waveleng frequency EM ra	gth, high-	transfe	energy is rred away ne nucleus	nower	sing	virtuall unlimit range i	ed	stopped by several centimetres of thick lead or metres of concrete


			N°	Contact forces	Non contact forces
Lear	GCSE Force	onfident	1	Air resistance Drag Friction Lift Normal contact force Tension Thrust Upthrust	Electrostatic forces Gravitational forces (weight) Magnetic forces
N°	Keyword			Definition	
2	Contact force	Occurs whe	n two o	bjects must touch for a fo	orce to act
3	Centre of mass	The point at concentrate		you assume the entire ma	ass of an object is
4	Elastic deformation	The object of forces are re	-	back to its original shape	and saize when the
5	Hooke's law The extension of an elastic object is directly proportional to the force applied provided that the limit of proportionality is not exceeded				
6	Inelastic deformation	The object of the forces a		DT go back to its original oved	shape and saize when
7	Limit of proportionality	The point at	The point at which an elastic object stops obeying Hooke's law		
8	Non contact force	Occurs whe	n two o	bjects do NOT need to to	uch for the force to act
9	Resultant force			can replace all other force fect as the original forces	
10	Scalar	Scalar quan	itities h	ave magnitude only (eg. c	listance and speed)
11	Vector	Vector quar force)	ntities h	ave magnitude AND direc	ction (eg. velocity and
12	20N	50N >	gives a r	resultant force 30N ——	→ 50N - 20N
10N 10Ngives a resultant force 0N 10N – 10N					
N°			Εq	uations to learn	
13		Weight = mass x gravitational field strength			
14	Work done = force x distance				
15	Force = spring constant x extension				

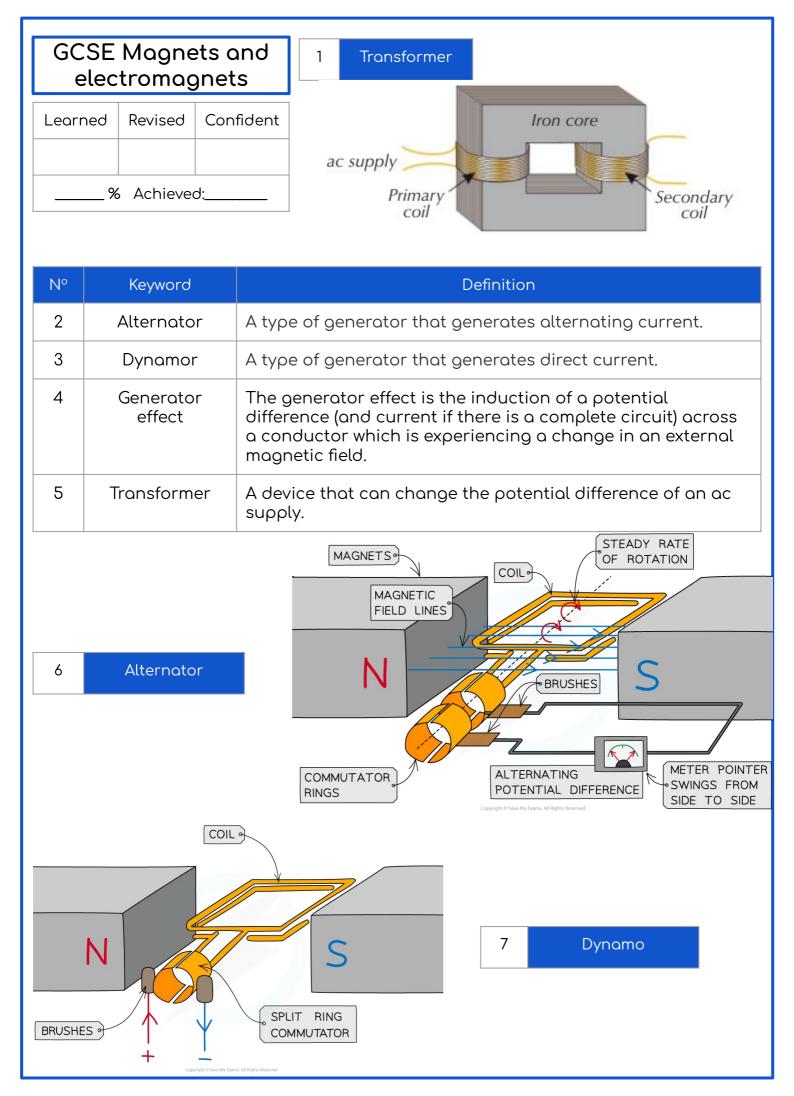
(GCSE Forces (:	2) 1 Typical speeds			
Learr	ned Revised Con	ifident			
		- 330 m/s (IN AIR)			
	% Achieved:				
N°	Keyword	Definition			
2	Displacement	A measure of an object's distance and direction in a straight line from its starting point to its finishing point on a journey.			
3	Velocity	Speed in a given direction.			
4	Braking distance	The distance moved by a vehicle, once the brakes are applied (affected by the conditions of the road, brakes and tyres)			
5	Thinking distance	The distance moved by a vehicle, during the drivers reaction time (affected by tiredness, drugs, alcohol, distractions)			
6	Stopping distance	Thinking distance + braking distance			
N°		Newton's laws of motion			
7	(1) If the resultant force on a stationary (still) object is zero, the object will remain stationary. If the resultant force on a moving object is zero, the object will keep moving with the same velocity. If there is a non-zero resultant force acting on an object, its velocity will change (accelerate).				
8	(2) Acceleration is directly proportional to force (more force, more acceleration). Acceleration is inversely proportional to mass (more mass, less acceleration)				
9	(3) When two objects	s interact, the forces they exert on each other are equal and opposite			
Distance (m)	10 Stopped Accelerating Steady speed Steady speed Time (s)				
N°	Equations to learn				
12	Distance travelled = speed x time				
13	Acceleration = <u>change in velocity</u> time				
14		Resultant force = mass x acceleration			
15		(HIGHER ONLY) Momentum = mass x velocity			

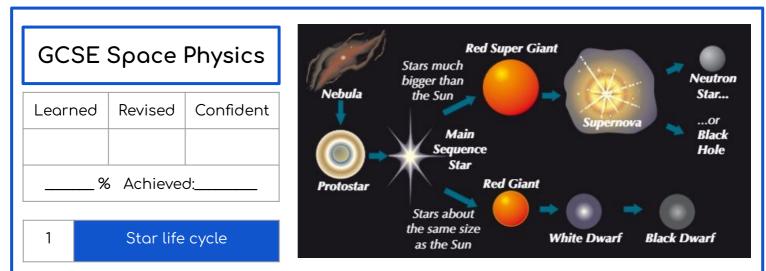
	GCSE Waves	1 Longitudinal wave 2 Transverse wave			
	ned Revised Cor	nfident			
N°	Keyword	Definition			
3	Amplitude	Maximum displacement of a point on a wave from its undisturbed position (m)			
4	frequency	Number of waves passing a fixed point per second (Hz)			
5	Period	Time taken for one complete wave to pass a fixed point (s)			
6	Wavelength	The distance from one point on a wave to the equivalent point on the next wave (m)			
7	Longitudinal wave	Oscillations are parallel to the direction of energy transfer			
8	Transverse wave	Oscillations are perpendicular to the direction of energy transfer			
9	Normal	A line that is perpendicular (90°) to a surface.			
10	Reflection	When a wave bounces back when it meets a boundary between two materials			
11	Reflection	When a wave changes direction when it reaches a boundary between two materials at an angle to the normal			
12	RADIO MICRO INFRA VISIBLE ULTRA X-RAYS GAMMA WAVES RED LIGHT VIOLET X-RAYS RAYS Long wavelength Short wavelength Short wavelength				
	Low frequency	High frequency			
N°	Facts				
13	Waves transfer energy without transferring matter				
14	The law of reflection is: angle of incidence = angle of reflection				
N°	Equations to learn				
15	Period = <u>1</u> frequency				
16		Wave speed = frequency x wavelength			

GC	SE Waves 2 TR ONLY	IPLE 1 Primary colours of light		
Learr	ned Revised Cor	afident		
	% Achieved:			
N°	Keyword	Definition		
2	Black body	Maximum displacement of a point on a wave from its undisturbed position (m)		
3	Concave	A lens that curves inwards and causes light to diverge.		
4	Convex	A lens that bulges outwards and causes light to converge		
5	Focal point	The distance from one point on a wave to the equivalent point on the next wave (m)		
6	Intensity	The power per unit area (W/m²)		
7	Lens	A line that is perpendicular (90°) to a surface.		
8	Seismic waves	nic waves A wave which travels through the Earth when an earthquake occurs. P-waves and S-waves are seismic waves.		
9	Sound wave	A longitudinal wave caused by vibrating particles.		
10	Ultrasound	nd Sound with a frequency that is higher than the range of human hearing (above 20,000 Hz).		


Convex lens ray diagram

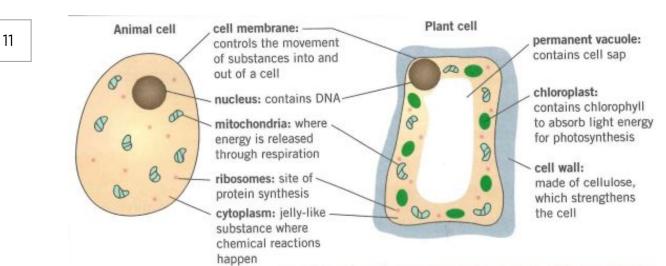
N°	Facts
13	As the temperature of an object increases, the intensity of every wavelength increases
14	As the temperature of an object increases, the peak wavelength decreases.


GCSE Magnets and electromagnets


Bar magnet magnetic field

Learned	Revised	Confident	
% Achieved:			

N°	Keyword	Definition			
2	Magnetic field	The region around a magnet where another magnet, or magnetic material will experience a force due to the magnet.			
3	Permanent magnet	Produces its own magnetic field which is always there			
4	Induced magnet	An object that becomes magnetic when it is placed in a magnetic field			
5	Electromagnet	A solenoid with an iron core			
	1	HIGHER ONLY			
6	Motor effect	When a current carrying wire in a magnetic field experiences a force			
7	Magnetic flux density	How many field (flux) lines there are in a region			
8	P CURRENT				
N°		Facts			
10		All magnets have a north and south pole			
11	Like poles	Like poles (eg. north and north, or south and south) repel each other			
12	Unlike	(opposite) poles (eg. north and south) attract each other			
13	Th	ne magnetic metals are iron, steel, cobalt and nickel			
14	The closer	together magnetic field lines are, the stronger the magnet			
15	М	agnetic field lines always point from north to south			



N°	Keyword	Definition
2	Dwarf planet	A planet-like object in space that orbits a star
3	Main sequence star	A star in the main sequence of its life, which is stable because the nuclear fusion provides pressure that balances the inward pull of gravity.
4	Nebula	A cloud of dust and gas in space.
5	Neutron star	The very dense core of a star that is left behind when a red super giant explodes in a supernova.
6	Nuclear fusion	When two nuclei join to form a heavier nucleus.
7	Orbit	The path on which one object moves around another
8	Planet	A natural object that orbits a star, and is large enough to have "cleared the neighbourhood".
9	Protostar	The earliest stage in the lifecycle of a star.
10	Red giant	A type of star that is formed when a star around the same size as the Sun expands as it begins to run out of hydrogen.
11	Red super giant	A type of star that is formed when a star much bigger than the Sun expands as it begins to run out of hydrogen.
12	Red shift	The shift in observed wavelength of light from a source moving away from a stationary observer (towards the red end of the EM spectrum)
13	Satellite	An object that orbits a second, more massive object. Satellites can be artificial or natural (e.g. the moon)
14	Supernova	The explosion of a red super giant
15	White dwarf	The hot, dense core left behind when a red giant becomes unstable and ejects its outer layer of dust and gas.

١	٧°	Facts
	16	The big bang theory says that initially, all matter in the universe occupied a very small space. This tiny space was very dense, and so was very hot Then it "exploded" - space started expanding, and the expansion is still going on.

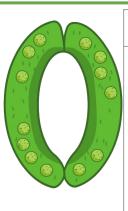
G	GCSE Cell Biology			1 Bocterium			toplasm
Lear	ned Revised	Confident			membrane		90
	% Achieved:					bacterial DNA loop (no nucleus)	plasmid DNA ring – bacteria may have more
N°	Keyword			[Definition		
2	Cell cycle	A process that all body cells use to grow and divide - it includes the stages "cell growth and DNA replication", "mitosis" and "cell division"		s the stages "cell			
3	Chromosome	A long molecule of DNA found in the nucleus, which carries genes					
4	Eukaryotic cell	ell A complex cell that has a nucleus, e.g. plant and animal cells					
5	Meristem	Unspecialised cells in plants that are capable of cell division					
6	Mitosis	When a cell reproduces itself by splitting to form two identical offspring		offspring			
7	Prokaryotic cell	A simple cell with no "true nucleus", e.g. a bacterium					
8	Specialised cell	A cell that is adapted to a particular function					
9	Stem cells	A cell that has not yet become specialised					
10	Therapeutic cloning	A type of cloning where the embryo is made to have the same genetic information as the patient					

N°	Cell transport		
12	Diffusion	Movement of particles from a high concentration to a low concentration	
13	Osmosis	Diffusion of water from a dilute solution to a concentrated solution through a partially permeable membrane	
14	Active transport	Movement of particles from a low concentration to a high concentration - needs energy from respiration	

	GCSE Human Organisation			The heart	Publicitary anny active publicitary
Learned	Revised	Confident			kil senar
					athan abovernated
	% Achieved	J:			night worktele

N°	Keyword	Definition		
2	Alveoli	Tiny air sacs arranged in clusters throughout the lungs. They provide a large surface area for gas exchange.		
3	Benign tumour	A growth of abnormal cells contained in one area, usually within a membrane.		
4	Carbohydrase	An enzyme that breaks down carbohydrates into simple sugars. Eg: Amylase		
5	Digestion	When large insoluble molecules are broken down into small soluble molecules		
6	Enzyme	A biological catalyst that speeds up the rate of a reaction.		
7	Lipase	An enzyme that breaks down lipids into fatty acids and glycerol		
8	Malignant tumour	A growth of cells that can invade neighbouring tissues and spread to different parts of the body in the blood where they form secondary tumours.		
9	Protease	An enzyme that breaks down proteins into amino acids		

10 Blood vessels

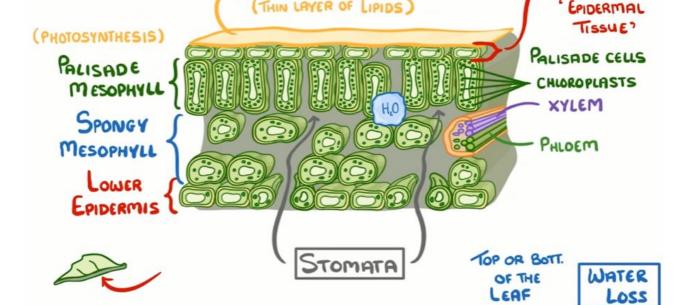


L CARRY	BLOOD
BACK TO	THE
HEA	RT

Treatment	Description	Advantage	Disadvantage
Statins	A type of drug that reduces blood cholesterol levels to slow down the rate at which fatty material is deposited in the coronary arteries.	Can reduce the risk of strokes, CHD and heart attacks.	Long term treatment and negative side effects.
Stents	A metal mesh tube placed in an artery to hold it open.	The success rate is high, they lower the risk of a heart attack and last for a long time.	Drugs needed to stop blood clotting.

GCSE Plant Organisation

Learned	Revised	Confident		
% Achieved:				


1

Guard cells

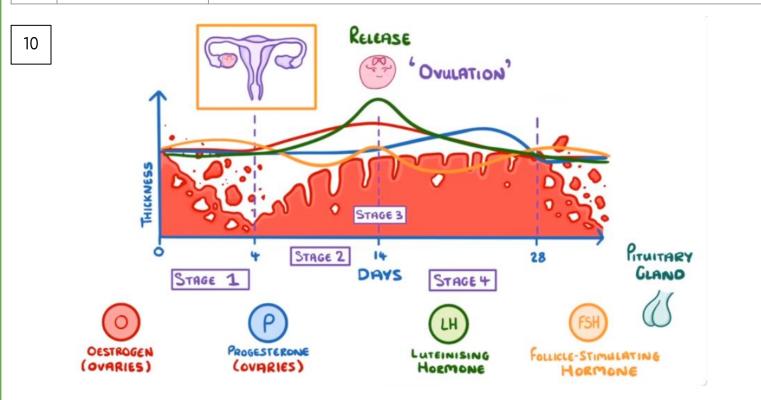
When there is plenty of water, the guard cells swell and become turgid, opening the stomata. When short of water, the guard cell loses water, becomes flaccid and the stomata close. They are also sensitive to light.

N°	Keyword	Definition		
2	Guard cell	A cell which controls the opening and closing of the stomata.		
3	Meristem tissue	Plant tissue found at the tips of roots and shoots made of actively dividing cells that can differentiate.		
4	Palisade mesophyll	A plant tissue that contains lots of chloroplasts to carry out photosynthesis.		
5	Phloem	A plant tissue that transports dissolved sugars from the leaves to other parts of the plant.		
6	Spongy mesophyll	A plant tissue that contains large air spaces and has a large surface area for diffusion		
7	Stomata	Small openings in the surface of a leaf that allow gases to diffuse into the leaf.		
8	Translocation	The movement of dissolved sugars from the leaves to the rest of the plant, via the phloem.		
9	Transpiration	The loss of water vapour through the stomata.		
10	Xylem	A plant tissue that transports water and mineral ions from the roots to the stems and leaves.		
11	Leaf structure	WAXY CUTICLE		
	(00000000000000000000000000000000000000	(THIN LAYER OF LIPIDS) "EPIDERMAL TISSUE"		

GCSE Infection an Response		and 1 Antibodies and antigens PATHOGEN ANTIBODY PATHOGEN ANTIBODY		
Lear	rned Revised Co	nfident (ANTIGEN)		
		MEASLES		
	% Achieved:			
N°	Keyword	Definition		
2	Antibiotic	A drug used to kill or prevent the growth of bacteria (e.g. penicillin)		
3	Antibody	A protein produced by white blood cells in response to the presence on an antigen		
4	Antigen	A molecule on the surface of a cell, with a specific shape		
5	Antitoxin	A protein produced by white blood cells which counteracts toxins (poisons) produced by bacteria		
6	Clinical trials	Drug tests on human volunteers		
7	Communicable disease			
8	Double-blind trial	A clinical trial where neither the doctors nor the patients know who has received the drug and who has received the placebo until after the trial		
9	Efficacy	Whether something (e.g. a drug) works or not		
10	Immunity	The ability of the white blood cells to respond quickly to a pathogen (so symptoms don't occur)		
11	Painkiller	A drug that relieves pain. It does NOT treat the disease.		
12	Pathogen	A microorganism that causes disease		
13	Phagocytosis	The process by which white blood cells engulf pathogens and digest them.		
14	Placebo	A dummy pill. Used in drug trials to test the effect of the real drug.		
15	Preclinical trial	Drug tests on human cells and tissues, and animals		
16	Vaccination An injection of dead or inactive pathogens to provide immunity			
N°		Facts		
17	Bacteria,	fungi, protists and viruses can all be pathogens (cause disease)		
18	The skin, hair, mucus and stomach acid are general defenses that prevent pathogens from infecting the body.			

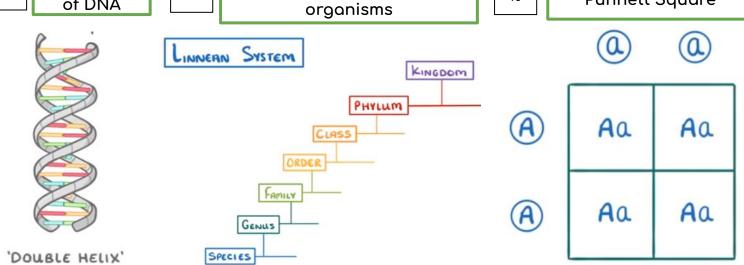
GCSE	Bioene	ergetics	1
Learned	Revised	Confident	Starch present
			No starch present
\$	% Achieved	J:	

Nocv	Keyword	Definition		
2	Aerobic	Respiration that involves the use of oxygen to transfer energy.		
3	Anaerobic	Respiration that takes place without oxygen to transfer energy.		
4	Fermentation	The process of breaking down sugars by anaerobic respiration in bacteria or yeast.		
5	Metabolism	The sum of all the reactions in the cell or body. This is controlled by enzymes		
6	Oxygen debt	The amount of extra oxygen the body needs after exercise to react with the accumulated lactic acid and remove it from the cells.		
7	Photosynthesis	An endothermic reaction in which energy is transferred from the environment to chloroplasts by light.		
8	Respiration	A chemical reaction that breaks down glucose to release energy.		
N ^{ocv}	Facts Definition			
9	Factors affectir	Factors affecting the rate of photosynthesis: Carbon dioxide, Temperature, Light intensity		
10		Plants use glucose for: Respiration, Making cellulose, Making amino acids, Converted and stored as lipids (fats), Converted and stored as starch, Stored as sucrose and other sugars in fruits.		
11	Gluc	Aerobic respiration Glucose + Oxygen → Carbon dioxide + Water + Energy		
12	Anaerobic respiration Glucose → Lactic acid + Energy			
13	(Fermentation Glucose → Ethanol + Carbon dioxide + Energy		
14	Photosynthesis Carbon dioxide + Water → Glucose + Oxygen			


GCSE Homeostasis			1	Reflex arc	
Learned	Revised	Confident			
% Achieved:					3

1. Sensory neurones link the receptor to the coordination centre.

2. Relay neurones are found within the coordination centre and connect the sensory and motor neurones.


3. Motor neurones link the coordination centre to the effector.

N°	Keyword	Definition
2	Adrenal gland	The gland where the hormone adrenaline is produced.
3	Follicle stimulating hormone (FSH)	A hormone involved in the menstrual cycle that causes maturation of an egg in the ovary.
4	Glycogen	Glucose is converted into this molecule for storage in liver and muscle cells.
5	Luteinising hormone (LH)	A hormone involved in the menstrual cycle that stimulates the release of an egg
6	Oestrogen	The main female reproductive hormone. It is produced by the ovaries. It is involved in thickening and maintaining the uterus lining
7	Pituitary gland	The 'master gland' located in the brain that secretes several hormones into the blood in response to body conditions.
8	Progesterone	A female reproductive hormone that is involved in maintaining the uterus lining.
9	Synapse	A gap between two neurones. Impulses pass across it by diffusion of chemical neurotransmitters.

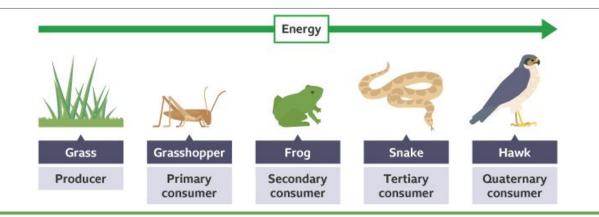
GCSE Inheritance and Evolution			1	Egg (Ovum)	Fertilisation	
Learned	Revised	Confident		23 chromosomes	Zygote	Embryo
% Achieved:				Sperm 23 chromosomes	46 chromosomes in 23 pairs	46 chromosomes in 23 pairs

N°	Keyword	Definition				
2	Alleles	Different forms of the same gene.				
3	DNA	Deoxyribonucleic acid. The material inside the nucleus of cells, carrying the genetic information of a living being.				
4	Dominant allele	Represented with a capital letter. It is always expressed, even if only one copy is present.				
5	Gamete	Sex cell (sperm in males and ova/eggs in females).				
6	Genome	Entire set of genetic material in an organism.				
7	Recessive allele	Represented with a lowercase letter. It is only expressed if two copies of it are present				
8	Structure of DNA	9 Classification of living 10 Punnett Square				

	Key facts				
11	Natural selection	All species of living things have evolved from simple life forms over a period of time.			
12	Genetically modified	Describes a cell or organism that has had its genetic code altered by adding a gene from another organism.			
13	Genetic engineering	Process which involves the artificial transfer of genetic information from one donor cell or organism to another.			
14	Evidence for evolution	Fossils, extinction, DNA analysis and antibiotic resistance.			

			Maintaining biodiversity
GCSE Ecology		ιοgy	Breeding programmes
Learned	Revised	Confident	Protection and regeneration of rare species
			Reintroduction of field margins and hedgerows.
			Reduction of deforestation and carbon dioxide emissions
% Achieved:			Recycling resources rather than dumping waste in landfill.

N°	Keyword	Definition
1	Abiotic factor	A non-living factor that can affect a community, e.g. light intensity and temperature
2	Adaptation	Special features that allow living organisms to survive and be successful in their habitat.
3	Biodiversity	The variety of all the different species of organisms on Earth, or within an ecosystem.
4	Biotic factor	A living factor that can affect a community, e.g. availability of food and new predators.
5	Community	Two or more populations of organisms occupying the same area.
6	Ecosystem	The interaction of a community of living organisms (biotic) and the non-living (abiotic) parts of their environment.
7	Interdependence	The dependence of each species on other species for food, shelter, pollination, seed dispersal etc. If one species is removed it can affect the whole community.
8	Quadrat	A square frame used to take a representative sample of plants or slow-moving animals in an area.
9	Transect	A line across a habitat or part of a habitat used to sample the number of organisms at regular intervals.


Facts

Carbon cycle - the main process involved are respiration, combustion and photosynthesis.

Water cycle - evaporation, condensation, precipitation, percolation, transpiration, respiration.

Global warming impacts living things by causing changes in the distribution of organisms, rising sea levels and habitat loss, changing weather patterns and changing migration patterns.

Land use for dumping waste, quarrying, farming and building - this reduces biodiversity.

