## year 10 - PROPORTION...

## @uhisto_maths

What do I need to be able to do?
By the end of this unit you should be able to:

- Compare quantities using ratio
comparisons
- Share in a given ratio
- Lolve Ratio and scales and graphs with currency conversions
- Solve best buy' problems
- Combine ratios


## Keywords

Ratio: a statement of how two numbers compare
I Equivalent: of equal value
I Proportion: a statement that links two ratios
II Integer: whole number, can be positive, negative or zero.
I Fraction: represents how many parts of a whole.
Denominator: the number below the line on a fraction The number represent the total number of parts.
Numerator: the number above the ine on a fraction. The top number. Represents how many parts are taken
Origin: $(0,0)$ on a graph. The point the two axes cross
Gradient: The steepness of a line


## Var 10 - 6 faverix....

## @uhisto maths

## Vectors

What do I need to be able to do?
By the end of this unit you should be able
to:
Understand and represent vectors

- Use and read vector notation
- Draw and understand vectors multiplied
by a scalar
- Draw and understand addition of
vectors
- Draw and understand addition and
subtraction of vectors



## Understand and represent vectors



Vector notation $\overrightarrow{D E}$ is another way to represent the vector joining the point D to the point E

$$
\overrightarrow{D E}=\binom{-3}{-1}
$$

The arrow also indicates the direction from point $D$ to point $E$
addition of vectors
$\left.\begin{array}{c}\overrightarrow{A B}=\binom{3}{1} \\ =\binom{3}{1}+\left(\begin{array}{c}2 \\ 2 \\ -4\end{array}\right) \\ =\binom{3}{3} \\ 1+-4\end{array}\right)$

Vectors multiplied by a scalar

$\boldsymbol{a}=\binom{-1}{2} \boldsymbol{b}=\binom{2}{-4} \quad \boldsymbol{c}=\binom{1}{-2}$ addition and subtraction of vectors



$$
\begin{gathered}
\boldsymbol{a}=\binom{5}{1} \quad \boldsymbol{b}=\binom{0}{4} \\
\boldsymbol{a}+(-\boldsymbol{b})=\binom{5+-0}{1+}=\binom{5}{-4} \\
\text { The resultant is } \boldsymbol{a}-\boldsymbol{b} \text { because the }
\end{gathered}
$$

The vectors $\boldsymbol{a}$ and $\boldsymbol{c}$ are also parallel a negative scalar causes the vector to reverse direction
$\boldsymbol{b}=-2 \times \boldsymbol{a}=-\mathbf{2 a}$

$$
\boldsymbol{b}=2 \times \boldsymbol{c}=2 \boldsymbol{c}
$$

Multiply $\boldsymbol{c}$ by 2 this becomes $\boldsymbol{b}$. The two ines are parallel

$$
a=-1 \times c=-c
$$

the vector to reverse direction

$$
b=-2 \times a=-2 a
$$

