YEAR 8 - ALGEBRAIC TECHNIQUES

@whisto maths

Brackets, Equations & Inequalities

What do I need to be able to do?

By the end of this unit you should be able to:

- Form Expressions
- Expand and factorise single brackets
- Form and solve equations
- Solve equations with brackets
- Represent inequalities
- Form and solve inequalities

Keywords

Simplifu: grouping and combining similar terms

Substitute: replace a variable with a numerical value

Equivalent: something of equal value

Coefficient: a number used to multiply a variable

Product: multiply terms

Highest Common Factor (HCF): the biggest factor (or number that multiplies to give a term)

Inequality: an inequality compares who values showing if one is greater than, less than or

Only similar terms can be grouped together

e.a. Find the perimeter of this shape (Perimeter = length around outside of shape) t + 2t + I + t + 2t + I -**→** 6t+2 ||

 $a^2 = a \times a = -5 \times -5 = 25$ b + a = 2 + -5 = -3

This is factorised but the HCF has not been used

6x + 12 = 30

3(2x + 4) = 30Expand the brackets Substitute to check your answer This could be negative or a fraction or decimal

3(2x + 4) = 30

Simple Inequalities

< less than < Less than or eaual to > More than ≥ More than or equal to x < 10Sau this out loud

"x is a value less than 10" 10 > xNote: Say this out loud x<10 and 10>x 10 is more than the value' represent the same

x + 2 < 20

"my value + 2 is less than or equal to 20" The biggest the value can be is 18

Form and solve inequalities

Two more than treble mu number is greater than 11 Find the possible range of values

Form

Solve

¹¹ Check

This would suggest any value bigger than 3 satisfies the statement 3 x 3 + 2 = 11 ✓ 10 x 3 + 2 = 32 <

<u>Olgebraic</u> constructs

Expression

a sentence with a minimum of two numbers and one maths operation

Equation

a statement that two things are equal

a single number or variable

Identitu

On equation where both sides have variables that cause the same answer includes ≡

Formula

a rule written with all mathematical symbols e.g. area of a rectangle $Q = b \times h$

YEAR 8 - ALGEBRAIC TECHNIQUES

@whisto maths

Sequences

What do I need to be able to do?

By the end of this unit you should be able to:

- Generate a sequence from term to term or position to term rules
- Recognise arithmetic sequences and find
- Recognise geometric sequences and other sequences that arise

Keywords

Sequence: items or numbers put in a pre-decided order

Term: a sinale number or variable

Position: the place something is located

Linear: the difference between terms increases or decreases (+ or -) by a constant value each time Non-linear: the difference between terms increases or decreases in different amounts, or by x or ÷

Difference: the gap between two terms

Orithmetic: a sequence where the difference between the terms is constant

Geometric: a sequence where each term is found by multiplying the previous one by a fixed non zero

Linear and Non Linear Sequences

Linear Sequences — increase by addition or subtraction and the same amount each time

Non-linear Sequences — do not increase by a constant amount — quadratic, geometric and Fibonacci.

- Do not plot as straight lines when modelled graphically
- The differences between terms can be found by addition, subtraction, multiplication or

Fibonacci Sequence — look out for this type of sequence

Each term is the sum of the previous two terms.

power for n

This is not linear as there is a

Sequences from algebraic rules This is substitution! 3n + 7

This will be linear - note the single

power of n. The values increase at a constant rate

2n - 5 -

Substitute the number of the term you are looking for in place of 'n'

|st term = 2(1) - 5 = -3

 2^{nd} term = 2 (2) - 5 = -1

 100^{th} term = 2 (100) - 5 = 195

Checking for a term in a sequence Form an equation

Is 201 in the sequence 3n - 4?

3n - 4 = 201

Solving this will find the position of the term in the sequence. $oldsymbol{\mathsf{I}}$ ONLY an integer solution can be in the sequence.

Sequence in a table and araphically

Position: the place in the sequence

Term: the number or variable (the number of squares in each image)

Position

Graphically

The **term** in

has 7 squares"

position 3

Because the terms increase by the same addition each time this

is **linear** — as seen in the graph

Complex algebraic rules

Misconceptions and comparisons

2 tijmes whatever n squared is

|st term = 2 x |2 = 2

2st term = 2 x 22 = 8 100^{th} term = 2×100^{2} = 2000 |st term = $(2 \times 1)^2 = 4$

2 times n then square the answei

 $(2n)^{2}$

2st term = (2 x 2)2 = 16 100^{th} term = $(2 \times 100)^2$ = 40000

st term = 1(1 + 5) = 6

in the sequence

You don't need to

$n(n + 5) \blacktriangleleft$

 2^{st} term = 2(2 + 5) = 14 100^{th} term = 100 (100 + 5) = 10500

expand the

Finding the algebraic rule

This is the 4 ____ → 4, 8, 12, 16, 20... times table

4n

7, 11, 15, 19, 22

This has the same constant difference — but is 3 more than the original sequence

4n + 3

This is the constant difference between the terms

This is the comparison (difference) between the original and new sequence

YEAR 8 - ALGEBRAIC TECHNIQUES ...

@whisto_maths

Indices

What do I need to be able to do?

By the end of this unit you should be able to:

- Odd/ Subtract expressions with indices
- Multiply expressions with indices
- Divide expressions with indices
- Know the addition law for indices
- Know the subtraction law for indices

l Keywords

Base: The number that gets multiplied by a power

Power: The exponent — or the number that tells you how many times to use the number in multiplication **Exponent**: The power — or the number that tells you how many times to use the number in multiplication

I Indices: The power or the exponent.

Coefficient: The number used to multiply a variable

Simplifu: To reduce a power to its lowest term

Product: Multiply

<u>Oddition/Subtraction with indices</u> Coefficient Power

Only similar terms can be simplified If they have different powers, they are unlike terms

$$5x^{2} + 6x^{4} - 3x^{2} + x^{4}$$

Divide expressions with indices

$$\frac{24}{36} \longrightarrow \frac{\cancel{\cancel{X}} \cancel{\cancel{X}} \cancel{\cancel{X}$$

Cross cancelling factors shows cancels the expression

Multiply expressions with indices

$$5tx9t$$

$$\equiv 5xtx9xt$$

$$\equiv 5x9xtxt$$

$$\equiv 45t^{2}$$

There are often misconceptions with this calculation but break down the powers

<u>Oddition/Subtraction laws for indices</u>

The base number is all the same so the terms can be simplified

Oddition law for indices $A^{m} X A^{n} = A^{m+n}$

Subtraction law for indices

$$a^m \div a^n = a^{m-n}$$