

What do I need to be able to do？
By the end of this unit you should be able to：
－Generate a sequence from term to term or postion to term rules
－Recognise arthmetic sequences and find the nth term
－Recognise geometric sequences and other sequences that arise
1 I $\overline{\text { Keywords }}$
I
I Sequence：items or numbers put in a pre－decided order
I
I Term：a single number or variable
I Position：the place something is located
I I Linear：the difference between terms increases or decreases（＋or－）by a constant value each time
I I Non－inear：the difference between terms increases or decreases in different amounts，or by x or \div
II
I Difference：the gap between two terms
I arithmetic：a sequence where the difference between the terms is constant
I Geometric：a sequence where each term is found by muttiplyng the previous one by a fixed non zero I I number

Keywords
I I Sequence：tems or numbers put in a pre－decided order
Term：a single number or variable
Position：the place something is located
I I Linear：the difference between terms increases or decreases（＋or－）by a constant value each time
I I Non－Iinear：the difference between terms increases or decreases in different amounts，or by x or \div
1 Difference：the gap between two terms
1）arithmetic：a sequence where the difference between the terms is constant
I I Geometric：a sequence where each term is found by multiplying the previous one by a fixed non zero

ᄂニニニニニニニニニニニニニコ느＝＝＝＝＝＝

Linear and Non Linear Sequences

Linear Sequences－increase by addition or subtraction and the same amount each time ｜Non－linear Sequences－do not increase by a constant amount－quadratic，geometric I and Fibonacci．
I－Do not plot as straight lines when modelled graphically
｜－The differences between terms can be found by addition，subtraction，muttiplication or division．

Fibonacci Sequence－look out for this type of sequence

Each term is the sum of the previous two terms．

Sequences from algebraic rules This is substitution！

This will be linear－note the single power of n The values increase at a constant rate

$$
2 n-5 \longrightarrow
$$

Substitute the number of the term you are looking for
eg
pt term $=2(1)-5=-3$
$2^{\text {nd }}$ term $=2(2)-5=-1$
$100^{\text {th }}$ term $=2(100)-5=195$
Checking for a term in a sequence form an equation
is 201 in the sequence $3 n-4$ ？
in place of＇n＇
$3 n^{2}+7$
This is not linear as there is a power for n

Solving this will find the position of the term in the sequence I ONLY an integer solution can be in the sequence I

is linear－as seen in the graph

II Complex algebraic rules Misconceptions and comparisons

Finding the algebraic rule
times table

This has the same constant difference－but is 3 more than the original sequence

$$
4 n+3
$$

yeAr 8 - AlgeBRalc techniQues...
@whisto_maths

Indices

What do I need to be able

 to do?By the end of this unit you should be able to:

- Odd/ Subtract expressions with indices
- Mutiply expressions with indices
- Divide expressions with indices
- Know the addition law for indices
- Know the subtraction law for indices

Keynords

Base: The number that gets mutiplied by a power
Power: The exponent - or the number that tells you how many times to use the number in multiplication
Exponent: The power - or the number that tells you how many times to use the number in mutipication
I Indices: The power or the exponent.
I Coeffcient: The number used to mutiply a variable
Simpify: To reduce a power to its lowest term
Product: Mutiply

Iadodion Subtraction with indices

Divide expressions with indices
$\frac{24}{36} \longrightarrow \frac{2 \times 2 \times 2 \times 3}{2 \times 3 \times 2 \times 3} \rightarrow \frac{2}{3}$
$\frac{5 a^{3} b^{2}}{15 a b^{6}} \rightarrow \frac{5 \times a \times a \times a \times b \times b}{3 \times 5 \times a \times b \times b \times b \times b \times b \times b} \rightarrow \frac{a^{2}}{3 b^{4}}$

Cross cancelling factors shows cancels the expression

This expression cannot be divided (cancelled down) because there are no common factors or similar terms

Multipy expressions with indices

	$4 b \times 3 a$
\equiv	$5+6 \times 3 \times a$
\equiv	
	$5 \times 3 \times b \times a$
\equiv	$12 a b$

$2 b^{4} \times 3 b^{2}$
$\equiv 2 \times b \times b \times b \times b \times 3 \times b \times b$
$\equiv 2 \times 3 \times b \times b \times b \times b \times b \times b$
$\equiv 6 b^{6}$

here are often misconceptions with this calculation but break down
the powers

Oadtion Subtraction laws for indices
$3^{5} \times 3^{2}$

$1=(3 \times 3 \times 3 \times 3 \times 3) \times(3 \times 3)$
I The base number is all the same so the terms
can be simplified
addition law for indices
$a^{m} \times a^{n}=a^{m+n}$

