Y8 Elements, compounds
and mixtures

Learned	Revised	Confident					
% Achieved:							

	General	G 1 1 1											6	C	Gener	Grad	(1)	Geoup O
2	⁷ Li	Be		н								"B	12 6	IN 7	16 0	I9 F	2 Ne	
3	23 Na	Mg		27 A1							27 AI 13	23 Si 14	³¹ P	32 16	35.5 CI	40 Ar 18		
4	39 19	*° Ca 20	*5 Sc 21	45 Ti 22	51 23	52 Cr 24	55 Mn 25	56 Fe 26	59 Co 27	54 Ni 28	62.5 Cu 29	65 Zn 30	70 Ga 31	73 Ge 32	75 As 33	₽ Se 3+	80 Br 35	84 Kr 36
5	85 Rb 37	88 Sr 38	89 Y 39	ªI ¥0	93 Nb 41	16 Mo 42	49 Tc 43	Ru 4+	Rh 45	Pd 46	Ag	Cd	115 In 49	50	122 Sb	128 Te 52	127 53	131 Xe 54
6	133 Cs 55	137 Ba 56	57-71 Lournament	HF	181 Ta 73	13¥ W 74	136 Re 75	190 OS 76	192 1r 77	145 Pt	Au 79	H9	204 TI 81	207 РЬ 82	209 Bi 83	Po	210 At 85	222 Rn 86
7	223 Fr 87	226 Ra 88	89 - 1 03 Acrowor															

N°	Keyword	Definition	
1	Element	A pure substance which is made f atom. Elements are listed on th	rom only one type of ne periodic table.
2	Compound	A pure substance made from tw elements which are chemic	o or more different cally bonded.
3	Mixture	When two or more compounds or but not chemically t	elements are mixed oonded
4	Molecule	Two or more atoms which are c	hemically bonded
5	Atom	The smallest particle of an element smaller particles called protons, ne	t. They are made from eutrons and electrons.
6	Periodic table	A table which lists all of the cher arranges them in order of atom	nical elements and ic (proton) number
Ieliu	M	CARBON DIOXIDE) (
He			E on
	Oxygen	$C_a(OH)_2$	
01			MIXTURE

N°	Fact
1	The elements in a compound are bonded in a fixed ratio, this is a chemical formula e.g. water is $\rm H_2O$ and carbon dioxide is $\rm CO_2$
2	Breaking compounds apart is difficult, the chemical bonds need to be broken in a chemical reaction such as thermal decomposition
3	Mixtures are easy to separate as they aren't bonded. We can use filtration, crystallisation, distillation or chromatography
4	We can represent chemical reactions in word or symbol equations Reactants \rightarrow Products

Y	8 Endotherm exothermic p	ic and roject	REACTANTS
Leari	ned Revised	Confident	Energy
	% Achieved:		PRODUCTS PROGRESS OF REACTION PROGRESS OF REACTION
N°	Keyword		Definition
1	Endothermi	A reac	tion that takes in energy from its surroundings, it can usually feel cold
2	Exothermic	A read	ction that releases energy to its surroundings, it usually feels warm
3	Variables	These measu	e are the things that are changed (independent), red (dependent) and kept the same (control) in an investigation
4	Conclusion inve and		nclusion describes what has been found in an igation. It should describe the pattern, use data explain the findings using scientific knowledge.
5	Evaluation	An eva looking	aluation judges how reliable the conclusion is by g at the results and method. Improvements to the method with explanations should be given.

N°	Fact
1	Some examples of endothermic reactions are photosynthesis and thermal decomposition.
2	Some examples of exothermic reactions are respiration, combustion, neutralisation and displacement.
3	Mixtures are easy to separate as they aren't bonded. We can use filtration, crystallisation, distillation or chromatography
4	We can represent chemical reactions in word or symbol equations Reactants \rightarrow Products

Y8 Respiration			1 AEROBIC RESPIRATION			
Learned Revised Confiden		Confident	GLUCOSE + OXYGEN CARBON + WATER			
			$C_{\mu_1}O_{\mu_2}O_{\mu_3} + 60, \rightarrow 6CO_2 + 6H_2O$			
	% Achieved	J:				
N°	Кеуwс	ord	Definition			
2	Respiro	ition	Chemical reaction in the mitochondria that releases energy			
3	Aerob	pic	In the presence of oxygen			
4	Anaera	obic	In the absence of oxygen			
5	Mitochondria		Subcellular structure where respiration takes place			
6	Ferment	ation	Anaerobic respiration carried out in bacteria and yeast			
7	Oxygen	debt	The amount of oxygen needed to work aerobically or break down the lactic acid.			
8	Gas exch	nange	The exchange of oxygen and carbon dioxide, usually between the blood and lungs or cells			
m		DRIA	9 NOT UNLOCKING ALL ENERGY LACTIC ACID (BUILD UP) LAS TO BE REMOVED			
	10	Giuco	SE ETHANOL + CARBON (TYPE OF ALCOHOL) DIOXIDE			
N°			Fact			
11	11 Aerobic respiration is longer lasting than anaerobic respiration, it also releases more energy					
12	Anaerobic respiration is used in in short, fast bursts of exercise e.g. sprinting					
13	Fermentation is used in the brewing and baking industries. The ethanol makes alcohol alcoholic and carbon dioxide makes the bread rise in baking.					