
Biology

GCSE Inheritance and Evolution				1	Å	Egg (Ovum)	Fertilisation	
Lear		Revised Achieved	Confident	-	İ	23 chromosomes	Zygote 46 chromosomes in 23 pairs	Embryo 46 chromosomes in 23 pairs
N°	K	Keyword				Def	inition	
2	Alleles	S	Differe	ent fo	rms o	f the same gene.		
3	DNA		Deoxyı	Deoxyribonucleic acid. The material inside the nucleus of cells,				

8	Structure of DNA	9 Classification of living 10 Punnett Square				
7	Recessive allele	Represented with a lowercase letter. It is only expressed if two copies of it are present				
6	Genome	Entire set of genetic material in an organism.				
5	Gamete	Sex cell (sperm in males and ova/eggs in females).				
4	Dominant allele	Represented with a capital letter. It is always expressed, even if only one copy is present.				
0		carrying the genetic information of a living being.				

'DOUBLE HELIX'

Key facts

11	Natural selection	All species of living things have evolved from simple life forms over a period of time.
12	Geneticolly modified	Describes a cell or organism that has had its genetic code altered by adding a gene from another organism.
13	Genetic engineering	Process which involves the artificial transfer of genetic information from one donor cell or organism to another.
14	Evidence for evolution	Fossils, extinction, DNA analysis and antibiotic resistance.

Chemistry

GCSE Rates of reaction				FOR PARTICLES TO REACT, THEY HAVE TO COULDE WITH EACH OTHER WITH SUFFICIENT ENERGY INCREASE THE RATE OF REACTION: ACTIVATION ENERGY I. AMOUNT OF ENERGY THE PARTICLES HAVE: (NOTHING WILL HAPPEN)	
Lear	rned	Revised	Confident	MORE ENERGY THEY CAN TRANSFER DURING THE COLLISION	
				2. FREQUENCY OF COLLISIONS: TEMPERATURE CONCENTRATION / PRESSURE	
	9	% Achieved	J:	MORE OFTEN	
N°				Facts	
1			and faster so t	increases the rate of reaction. Particles have more energy and so he frequency of collisions increases - they also collide with more ergy meaning more successful collisions	
2	2 Increasing the concentration/pressure increases the rate of reaction. There are more particles in the same volume and so the frequency of collisions increases.				
3	Increasing the Surface area increases the rate of reaction. There are more exposed particles and so the frequency of collisions increases.				
4	Adding a catalyst to a reaction increases the rate of reaction. The catalyst provides an alternate reaction pathway with a lower activation energy so more particles have successful collisions (with enough energy to overcome activation energy)				
5				tors we can use to,measure rate of reaction: measure the volume of s in mass; measure the turbidity (cloudiness) if a solid is produced	
				Calculating rate of reaction	
RATE	OF REA	стион —	QUATITY OF R	TAKEN (S) RATE OF REACTION = QUANTITY OF PRODUCTS FORMED TIME TAKEN (S)	
1. Мели Оver a ce 'шнат is th of r in th 3 m 12.0 (180	Mean rate of reaction (H + F) I. MEAN RATE OVER A CEATAIN PERIOD I. MEAN RATE OVER A CEATAIN PERIOD IN THE FIRST 3 MINUTES (ISO SECONDS) = 6.67 cm ³ /s Mean rate of reaction (H + F) Rate of reaction at a specific time (H only) A. Actual Rate A PARTICULAR Time I 200 I				
N°			F	eversible reactions (⇔) and equilibrium	
				cal reactions are reversible, indicated by a ≒ arrow. sible reaction reaches a state of equilibrium:	
6		' The rate o	f the forward	reaction is equal to the rate of the reverse reaction, in a closed system"	
	W			n of equilibrium by changing the concentrations, temperature or system - this will change the yield of the products too.	

Physics

(GCSE Forces (2) 1 Typical speeds				
Lear	ned Revised Cor	nfident Sound Waves				
		- 330 m/s (IN AIR)				
	% Achieved:					
N°	Keyword	Definition				
2	Displacement	A measure of an object's distance and direction in a straight line from its starting point to its finishing point on a journey.				
3	Velocity	Speed in a given direction.				
4	Braking distance	The distance moved by a vehicle, once the brakes are applied (affected by the conditions of the road, brakes and tyres)				
5	Thinking distance	The distance moved by a vehicle, during the drivers reaction time (affected by tiredness, drugs, alcohol, distractions)				
6	Stopping distance	ance Thinking distance + braking distance				
N°		Newton's laws of motion				
7	(1) If the resultant force on a stationary (still) object is zero, the object will remain stationary. If the resultant force on a moving object is zero, the object will keep moving with the same velocity. If there is a non-zero resultant force acting on an object, its velocity will change (accelerate).					
8	(2) Acceleration is directly proportional to force (more force, more acceleration). Acceleration is inversely proportional to mass (more mass, less acceleration)					
9	(3) When two object	s interact, the forces they exert on each other are equal and opposite				
Distance (m)	(u) 10 Stopped Accelerating Steady speed Time (s)					
N°		Equations to learn				
12	Distance travelled = speed x time					
13	Acceleration = <u>change in velocity</u> time					
14	Resultant force = mass x acceleration					
15	(HIGHER ONLY) Momentum = mass x velocity					

	GCSE Waves	1 Longitudinal wave 2 Transverse wave				
Leon	ned Revised Cor	nfident				
N°	Keyword	Definition				
3	Amplitude	laximum displacement of a point on a wave from its undisturbed osition (m)				
4	frequency	Number of waves passing a fixed point per second (Hz)				
5	Period	Time taken for one complete wave to pass a fixed point (s)				
6	Wavelength	The distance from one point on a wave to the equivalent point on the next wave (m)				
7	Longitudinal wave	Oscillations are <u>parallel</u> to the direction of energy transfer				
8	Transverse wave	Oscillations are perpendicular to the direction of energy transfer				
9	Normal	A line that is perpendicular (90°) to a surface.				
10	Reflection	When a wave bounces back when it meets a boundary between two materials				
11	Reflection	When a wave changes direction when it reaches a boundary between two materials at an angle to the normal				
12	12 RADIO MICRO INFRA VISIBLE ULTRA X-RAYS CAMMA WAVES WAVES RED UCHT VIOLET X-RAYS RAYS Long wavelength Short wavelength					
	Low frequency	High frequency				
N°	Facts					
13	Waves transfer energy without transferring matter					
14	The law of reflection is: angle of incidence = angle of reflection					
N°	Equations to learn					
15	Period = <u>1</u> frequency					
16	Wave speed = frequency x wavelength					