Biology

GCSE Inheritance and Evolution					Ť	→ () Egg (Ovum)	Fertilisation		
Leor	ned Revised	d Co /ed:	nfident	-	Ņ	23 chromosomes Sperm 23 chromosomes	Zygote 46 chromosomes in 23 pairs	Embryo 46 chromosomes in 23 pairs	
N°	Keyword	9				Def	inition		
2	Alleles	lleles Different forms of the same gene.							
3	DNA		Deoxyribonucleic acid. The material inside the nucleus of cells.						

8	Structure	9 Classification of living 10 Punnett Square					
7	Recessive allele	Represented with a lowercase letter. It is only expressed if two copies of it are present					
6	Genome	Entire set of genetic material in an organism.					
5	Gamete	Sex cell (sperm in males and ova/eggs in females).					
4	Dominant allele	Represented with a capital letter. It is always expressed, even if only one copy is present.					
0		carrying the genetic information of a living being.					

'DOUBLE HELIX'

Key facts

11	Natural selection	All species of living things have evolved from simple life forms over a period of time.
12	Genetically modified	Describes a cell or organism that has had its genetic code altered by adding a gene from another organism.
13	Genetic engineering	Process which involves the artificial transfer of genetic information from one donor cell or organism to another.
14	Evidence for evolution	Fossils, extinction, DNA analysis and antibiotic resistance.

Chemistry

GCSE Rates of reaction				FOR PARTICLES TO REACT, THEY HAVE TO COULDE WITH EACH OTHER WITH SUFFICIENT ENERGY INCREASE THE RATE OF REACTION: ACTIVATION ENERGY I. AMOUNT OF ENERGY THE PARTICLES HAVE:					
Lear	rned	Revised	Confident	* MORE ENERGY THEY CAN TRANSFER DURING THE COLLISION					
				2. FREQUENCY OF COLLISIONS: TEMPERATURE CONCENTRATION / PRESSURE					
	MORE OFTEN SUCCESSFUL SURFACE AREA CATALYST								
N°				Facts					
1	Increasing the temperature increases the rate of reaction. Particles have more energy and so move more and faster so the frequency of collisions increases - they also collide with more energy meaning more successful collisions								
2	2 Increasing the concentration/pressure increases the rate of reaction. There are more particles in the same volume and so the frequency of collisions increases.								
3	Increasing the Surface area increases the rate of reaction. There are more exposed particles and so the frequency of collisions increases.								
4	Adding a catalyst to a reaction increases the rate of reaction. The catalyst provides an alternate reaction pathway with a lower activation energy so more particles have successful collisions (with enough energy to overcome activation energy)								
5	5 There are generally three factors we can use to,measure rate of reaction: measure the volume of gas produced; measure loss in mass; measure the turbidity (cloudiness) if a solid is produced								
				Calculating rate of reaction					
RATE	OF REA	топто	QUATITY OF R	RATE OF REACTION = QUANTITY OF PRODUCTS FORMED					
			TIME	TAKEN (S)					
	Mean	rate of read	ction (H + F)	Rate of reaction at a specific time (H only)					
1. ΜΕΑΠ Ονέκ α σε "ωματ is ti οf κ ΙΝ Τι 3 τη 1λ(3 τη (180 6.	1. MEAN RATE $O_{VER A CERTAIN PERIOD}$ $G_{WHAT IS THE MEAN RATE of Reaction IN THE FIRST 3 minutes?' \frac{1200 \text{ minutes}}{1200 \text{ minutes}} G_{ADIENT} G_{RADIENT} G_{RADIENT G_{RADIENT} G_{RADIENT} G_{RADI$								
N°			F	Reversible reactions (≒) and equilibrium					
	Some chemical reactions are reversible, indicated by a ≒ arrow. A reversible reaction reaches a state of equilibrium:								
6	" The rate of the forward reaction is equal to the rate of the reverse reaction, in a closed system"								
	We can change the position of equilibrium by changing the concentrations, temperature or pressure of the system - this will change the yield of the products too.								

Physics

(GCSE Forces (2) 1 Typical speeds							
Learı	ned Revised Cor	nfident Sound Waves							
		de trans							
	% Achieved:	- 330 m/s (IN AIR)							
N°	Keyword	Definition							
2	Displacement	A measure of an object's distance and direction in a straight line from its starting point to its finishing point on a journey.							
3	Velocity	Speed in a given direction.							
4	Braking distance	The distance moved by a vehicle, once the brakes are applied (affected by the conditions of the road, brakes and tyres)							
5	Thinking distance	The distance moved by a vehicle, during the drivers reaction time (affected by tiredness, drugs, alcohol, distractions)							
6	Stopping distance	Thinking distance + braking distance							
N°	N° Newton's laws of motion								
7	(1) If the resultant force on a stationary (still) object is zero, the object will remain stationary. If the resultant force on a moving object is zero, the object will keep moving with the same velocity. If there is a non-zero resultant force acting on an object, its velocity will change (accelerate).								
8	(2) Acceleration is directly proportional to force (more force, more acceleration). Acceleration is inversely proportional to mass (more mass, less acceleration)								
9	(3) When two object	s interact, the forces they exert on each other are equal and opposite							
Distance (m)	10 Decelerating Stopped Accelerating Steady speed Steady speed Time (s)								
N°	Equations to learn								
12	Distance travelled = speed x time								
13	Acceleration = <u>change in velocity</u> time								
14	Resultant force = mass x acceleration								
15	(HIGHER ONLY) Momentum = mass x velocity								

GCSE Waves				1	Longit	udinal wave	2	Transverse wave			
Learned Revised Con			Confid	dent			Amplitude		amplitude amplitude		
	%	Achieve	d:		Compress	ion Rare	faction Compr	ression	trough		
N°	Keyword						Definit	ion			
3	Amp	olitude	N P	Maximum displacement of a point on a wave from its undisturbed position (m)							
4	frec	quency	٩	Number of waves passing a fixed point per second (Hz)							
5	Peri	od	Т	Time taken for one complete wave to pass a fixed point (s)							
6	Wavelength			The distance from one point on a wave to the equivalent point on the next wave (m)							
7	Longitudinal wave			Oscillations are <u>parallel</u> to the direction of energy transfer							
8	Trar	Transverse wave			Oscillations are perpendicular to the direction of energy transfer						
9	Nor	Normal			A line that is perpendicular (90°) to a surface.						
10	Reflection			When a wave bounces back when it meets a boundary between two materials							
11	Reflection			When a wave changes direction when it reaches a boundary between two materials at an angle to the normal							
12	RADIO MICRO WAVES WAVES				INFRA RED		BLE ULT HT VIO	ra Let VVVVVV	X-RAYS CAMMA RAYS		
	Long wavelength			Short waveleng					Short wavelength		
NIO	Low trequency High frequency										
13	Facts										
12	The low of re				flection is: onole of incidence = onole of reflection						
	I ne law of reflection is: angle of incidence = angle of reflection										
N°	Equations to learn										
15	Period = <u>1</u> frequency										
16				W	Wave speed = frequency x wavelength						