Biology

| GCSE Human |
| :--- | :--- | :--- | :--- | :--- |
| Organisation |

Chemistry

Learned	Revised	Confident
\% Achieved:_		

IONIC BONDS TRANSFER of ELEGTRONS

N°	Keyword	Definition
1	Delocalised electron	An electronic that isn't associated with an atom or bond, it is free to move through the structure
2	Metallic bond	Giant structure of positive metal ions in a sea of delocalised electronsforming strong electrostatic forces of attraction
3	Ionic bond	Strong electrostatic forces of attraction between oppositely charged ions (formed from the transfer of electrons)
4	Covalent bond	Shared pair(s) of electrons between non-metal atoms
5	Electrostatic forces	Strong forces of attraction between oppositely charged particles e.g. ions and/or electrons
6	Intermolecular forces	Weak forces of attraction that occur between molecules.

In bonding, atoms look to gain a full outer shell of electrons. They can lose electrons to drop down a shell, gain to fill their shell or share electrons between their outer shell

In ionic bonding, the metal atom loses electron(s) to become a positive ion, the non-metal gains the electron to become a negative ion. These ions then form a giant structure.

In covalent bonding, atoms share pairs of electrons to fill their outer shells. This can form a simple molecule (e.g. $\mathrm{H}_{2} \mathrm{O}$) or a giant structure like diamond.

The properties of a substance relate to its structure and bonding. For example, giant structures will generally have high melting and boiling points whereas small, simple structures will have low melting and boiling points
Physics

No	Keyword	Definition
2	Alternating current	Current that changes direction
3	Direct current	Current that flows in one direction only
4	Step up transformer	Increases the potential difference and decreases the current (reducing resistance and heat loss, and increasing efficiency)
5	Step down transfer	Decreases the potential difference to a safe level (230V for homes).
6	The national grid	A network of cables and transformers that links electricity power stations to consumers
N°		Facts
7	UK alternating current has a potential difference of 230 V and a frequency of 50 Hz	
8	The National Grid	Power station High voltage transmission lines Consumers, for example homes, factories and shops
N ${ }^{\circ}$	Equations to learn	
9	power $=$ potential difference \times current	
10	power $=($ current $) 2 \times$ resistance	
11	energy transferred $=$ power \times time	
12	energy transferred $=$ charge flow \times potential difference	

