
Link to the specification website

Download the specification as a PDF

All Isaac Computer Science

Resources

Paper 1 All Craig and Dave videos

on YouTube
Specification Ref Name of topic Content Resources to support (links on

the classroom)
4.1.1.16 Recursive techniques Be familiar with the use of recursive techniques in

programming languages (general and base cases and the

mechanism for implementation).

Be able to solve simple problems using recursion.

NOTE: In order to understand the mechanism for

implementation, you need to need to understand the following:

4.1.1.15 Role of stack frames in subroutine calls

Be able to explain how a stack frame is used with subroutine

calls to store:

• return addresses

• parameters

• local variables.

4.2.1.2 Single- and

multidimensional

arrays (or equivalent)

Use arrays (or equivalent) in the design of solutions to simple

problems.

A one-dimensional array is a useful way of representing a

vector. A two-dimensional array is a useful way of representing

a matrix. More generally, an n-dimensional array is a set of

elements with the same data type that are indexed by a tuple

of n integers, where a tuple is an ordered list of elements.

From exam board

Inferred and suggested by teachers

https://www.aqa.org.uk/subjects/computer-science-and-it/as-and-a-level/computer-science-7516-7517/subject-content-a-level
https://filestore.aqa.org.uk/resources/computing/specifications/AQA-7516-7517-SP-2015.PDF
https://isaaccomputerscience.org/topics/a_level?examBoard=all&stage=all#aqa
https://isaaccomputerscience.org/topics/a_level?examBoard=all&stage=all#aqa
https://www.youtube.com/c/craigndave/playlists?view=50&sort=dd&shelf_id=5
https://www.youtube.com/c/craigndave/playlists?view=50&sort=dd&shelf_id=5

4.2.1.4 Abstract data

types/data structures

Be able to distinguish between static and dynamic structures

and compare their uses, as well as explaining the advantages

and disadvantages of each.

Note: it would also be helpful to understand the following

concepts and uses of:

• queues (linear, circular, priority)

• stack

• graph

• tree

• hash table

• dictionary

• vector.

4.2.2 Queues Be able to describe and apply the following to linear queues,

circular queues and priority queues:

• add an item

• remove an item

• test for an empty queue

• test for a full queue.

4.2.3 Stacks Be able to describe and apply the following operations:

• push

• pop

• peek or top

• test for empty stack

• test for stack full.

Peek or top returns the value of the top element

without removing it.

4.2.4 Graphs Be aware of a graph as a data structure used to represent

more complex relationships.

AND

Be able to explain the terms:

• graph

• weighted graph

• vertex/node

• edge/arc

• undirected graph

• directed graph.

AND

Know how an adjacency matrix and an adjacency list may be

used to represent a graph.
4.2.5 Trees Know that a tree is a connected, undirected graph with no

cycles.

NOTE: a tree does not have to have a root.

4.3.1 Graph-traversal Simple graph-traversal algorithms Be able to trace breadth-

first and depth-first search algorithms and describe typical

applications of both.

Breadth-first: shortest path for an unweighted graph.

Depth-first: Navigating a maze.

4.3.4 Searching algorithms 4.3.4.1 Linear search

Know and be able to trace and analyse the complexity of the

linear search algorithm.

Time complexity is O(n).

4.3.4.2 Binary search

Know and be able to trace and analyse the time complexity of

the binary search algorithm.

Time complexity is O(log n).

4.3.4.3 Binary tree search

Be able to trace and analyse the time complexity of the binary

tree search algorithm.

Time complexity is O(log n).

NOTE: In order to understand binary tree search, you should

also understand 4.3.2 Tree-traversal (4.3.2.1 Simple tree-

traversal algorithms):

Be able to trace the tree-traversal algorithms:

• pre-order

• post-order

• in-order.
4.3.5 Sorting algorithms 4.3.5.1 Bubble sort

Know and be able to trace and analyse the time complexity of

the bubble sort algorithm.

This is included as an example of a particularly inefficient

sorting algorithm, time-wise. Time complexity is O(n ²).

4.3.5.2 Merge sort

Be able to trace and analyse the time complexity of the merge

sort algorithm.

The 'merge' sort is an example of 'Divide and Conquer'

approach to problem solving. Time complexity is O(nlog n).

4.3.6 Optimisation

algorithms

4.3.6.1 Dijkstra’s shortest path algorithm

Understand and be able to trace Dijkstra’s shortest path

algorithm. Be aware of applications of shortest path algorithm.

Students will not be expected to recall the steps in Dijkstra's

shortest path algorithm.

NOTE: this links with 4.3.1.1 Simple graph-traversal

algorithms

4.4.1.1 Problem-solving Be able to develop solutions to simple logic problems.

4.4.1.2 Following and writing

algorithms

Be able to hand-trace algorithms.

4.4.4.3 Order of complexity Be familiar with Big-O notation to express time complexity and

be able to apply it to cases where the running time

requirements of the algorithm grow in:

• constant time

• logarithmic time

• linear time

• polynomial time

• exponential time.

NOTE: In order to understand Big-O fully, it is advisable to

revise the following areas as well in section 4.4.4 Classification

of algorithms:

4.4.4.1 Comparing algorithms

Understand that algorithms can be compared by expressing

their complexity as a function relative to the size of the

problem. Understand that the size of the problem is the key

issue.

Understand that some algorithms are more efficient:

• time-wise than other algorithms

• space-wise than other algorithms.

Efficiently implementing automated abstractions means

designing data models and algorithms to run quickly while

taking up the minimal amount of resources such as memory.

4.4.4.2 Maths for understanding Big-0 notation

Be familiar with the mathematical concept of a function as a

mapping from one set of values, the domain, to another set of

values, drawn from the co-domain, for example ℕ → ℕ.

4.4.4.7 Halting problem Describe the Halting problem (but not prove it), that is the

unsolvable problem of determining whether any program will

eventually stop if given particular input.

Understand the significance of the Halting problem for

computation.

The Halting problem demonstrates that there are some

problems that cannot be solved by a computer.

Paper 2
Specification Ref Name of topic Content

4.5.2 Number bases Be familiar with the concept of a number base, in particular:

• decimal (base 10)

• binary (base 2)

• hexadecimal (base 16)

Convert between decimal, binary and hexadecimal number

bases.

Be familiar with, and able to use, hexadecimal

as a shorthand for binary and to understand

why it is used in this way

4.5.3 Units of information Know that:

• the bit is the fundamental unit of information

• a byte is a group of 8 bits.

Know that the 2n different values can be represented with n

bits

Know that quantities of bytes can be described using binary

prefixes representing powers of 2 or using decimal prefixes

representing powers of 10, eg one kibibyte is written as 1KiB =

2^10 B and one kilobyte is written as 1 kB = 10^3 B.

Know the names, symbols and corresponding powers of 2 for

the binary prefixes:

• kibi, Ki - 2^10

• mebi, Mi - 2^20

• gibi, Gi - 2^30

• tebi, Ti - 2^40

Know the names, symbols and corresponding powers of 10 for

the decimal prefixes:

• kilo, k - 10^3

• mega, M - 10^6

• giga, G - 10^9

• tera, T - 10^12

4.5.4.2 Unsigned binary

arithmetic

Be able to:

• add two unsigned binary integers

• multiply two unsigned binary integers.

4.5.4.3 Signed binary using

two's complement

Know that signed binary can be used to represent negative

integers and that one possible coding scheme is two’s

complement.

Know how to:

• represent negative and positive integers in two’s complement

• perform subtraction using two’s complement

• calculate the range of a given number of bits, n.

4.5.4.4 Numbers with a

fractional part

Know how numbers with a fractional part can be represented

in:

• fixed point form in binary in a given number of bits

• floating point form in binary in a given number of bits.

Be able to convert for each representation from:

• decimal to binary of a given number of bits

• binary to decimal of a given number of bits.

4.5.4.6 Absolute and relative

errors

Be able to calculate the absolute error of numerical data

stored and processed in computer systems.

Be able to calculate the relative error of numerical data stored

and processed in computer systems.

4.5.4.8 Normalisation of

floating point form

Know why floating point numbers are normalised and be able

to normalise unnormalised floating point numbers with

positive or negative mantissas

4.5.6.7 Digital representation

of sound

Calculate sound sample sizes in bytes.

4.5.6.8 Musical Instrument

Digital Interface

(MIDI)

Describe the purpose of MIDI and the use of event messages

in MIDI.

Describe the advantages of using MIDI files for representing

music.

4.6.1.2 Classification of

software

Explain what is meant by:

• system software

• application software.

Understand the need for, and attributes of, different types of

software.

4.6.1.3 System Software Understand the need for, and functions of the following system

software:

• operating systems (OSs)

• utility programs

• libraries

• translators (compiler, assembler, interpreter).

4.6.1.4 Role of an operating

system (OS)

Know that the OS handles resource management, managing

hardware to allocate processors, memories and I/O devices

among competing processes.

4.6.2 Classification of

programming

languages

Know that low-level languages are considered to be:

• machine-code

• assembly language.

Describe machine-code language and assembly language.

Understand the advantages and disadvantages of machine-

code and assembly language programming compared with

high-level language programming.

4.6.4 Logic Gates Construct truth tables for the following logic gates:

• NOT

• AND

• OR

• XOR

• NAND

• NOR.

Be familiar with drawing and interpreting logic gate circuit

diagrams involving one or more of the above gates.

Complete a truth table for a given logic gate circuit.

Write a Boolean expression for a given logic gate circuit.

Draw an equivalent logic gate circuit for a given Boolean

expression.

Recognise and trace the logic of the circuits of a half-adder

and a full-adder.

Construct the circuit for a half-adder.

Be familiar with the use of the edge-triggered D type flip-flop

as a memory unit.

4.6.5 Boolean Algebra Be familiar with the use of Boolean identities and De Morgan’s

laws to manipulate and simplify Boolean expressions.

4.7.1 Internal hardware

components of a

computer

Be able to explain the difference between von Neumann and

Harvard architectures and describe where each is typically

used.

4.7.2 The stored program

concept

Be able to describe the stored program concept: machine

code instructions stored in main memory are fetched and

executed serially by a processor that performs arithmetic and

logical operations.

4.7.3.3 The processor

instruction set

Understand the term ‘processor instruction set’ and know that

an instruction set is processor specific.

Know that instructions consist of an opcode and one or more

operands (value, memory address or register).

4.7.3.4 Addressing Modes Understand and apply immediate and direct addressing

modes.

4.7.3.5 Machine-

code/assembly

language operations

Understand and apply the basic machine-code operations of:

• load

• add

• subtract

• store

• branching (conditional and unconditional)

• compare

• logical bitwise operators (AND, OR, NOT,

XOR)

• logical

• shift right

• shift left

• halt.

Use the basic machine-code operations above when machine-

code instructions are expressed in mnemonic form- assembly

language, using immediate and direct addressing.

4.7.4.1 Input and Output

devices

Know the main characteristics, purposes and suitability of the

devices and understand their principles of operation.

4.7.4.2 Secondary storage

devices

Explain the need for secondary storage within a computer

system

Know the main characteristics, purposes, suitability and

understand the principles of operation of the following devices:

• hard disk

• optical disk

• solid-state disk (SSD).

4.8.1 Individual (moral),

social (ethical), legal

and cultural issues

and oppurtunities

Show awareness of current individual (moral), social (ethical),

legal and cultural opportunities and risks of computing.

Understand that:

• developments in computer science and the digital

technologies have dramatically altered the shape of

communications and information flows in societies, enabling

massive transformations in the capacity to:

• monitor behaviour

• amass and analyse personal information

• distribute, publish, communicate and disseminate personal

information.

• computer scientists and software engineers therefore have

power, as well as the responsibilities that go with it, in the

algorithms that they devise and the code that they deploy.

• software and their algorithms embed moral and cultural

values.

• the issue of scale, for software the whole world over, creates

potential for individual computer scientists and software

engineers to produce great good, but with

it comes the ability to cause great harm.

Be able to discuss the challenges facing legislators in the

digital age.

4.9.1 Communication Define serial and parallel transmission methods and discuss

the advantages of serial over parallel transmission.

Define and compare synchronous and asynchronous data

transmission.

Describe the purpose of start and stop bits in asynchronous

data transmission.

Define:

• baud rate

• bit rate

• bandwidth

• latency

• protocol.

Differentiate between baud rate and bit rate.

Understand the relationship between bit rate and bandwidth.

4.9.2.2 Types of networking

between hosts

Explain the following and describe situations where they might

be used:

• peer-to-peer networking

• client-server networking.

4.9.3.1 The internet and how

it works

Describe the term 'uniform resource locator' (URL) in the

context of internetworking.

Explain the terms ‘fully qualified domain name’ (FQDN),

‘domain name’ and ‘IP address’.

Describe how domain names are organised.

Understand the purpose and function of the domain service

and its reliance on the Domain Name Server (DNS) system.

4.9.4.11 Thin- versus thick-

client computing

Compare and contrast thin-client computing with thick-client

computing.

4.10.1 Conceptual data

models and entity

relationship modelling

Produce a data model from given data requirements for a

simple scenario involving multiple entities.

Produce entity relationship diagrams representing a data

model and entity descriptions in the form: Entity1 (Attribute1,

Attribute2,).

4.10.2 Relational databases Explain the concept of a relational database.

Be able to define the terms:

• attribute

• primary key

• composite primary key

• foreign key.

NOTE: The content in this section will not be directly assessed

but students will need to have an understanding of it to answer

other questions

4.10.3 Database design and

normalisation

techniques

Normalise relations to third normal form.

Understand why databases are normalised.

4.10.4 Structured Query

Language (SQL)

Be able to use SQL to retrieve, update, insert and delete data

from multiple tables of a relational database.

Be able to use SQL to define a database table

4.12.1.3 Function application Know that function application means a function applied to its

arguments.

4.12.1.5 Compostition of

functions

Know what is meant by composition of functions.

4.12.2 Writing functional

programs

Show experience of constructing simple programs in a

functional programming language.

Higher-order functions.

Have experience of using the following in a functional

programming language:

• map

• filter

• reduce or fold.

