From exam board		Link to the specification website		
Inferred and sugge	sted by teachers	Download the specification as a PDF		
				All Isaac Computer Science
				Resources
Paper 1				All Craig and Dave videos
				on YouTube
Specification Ref	Name of topic	Content		Resources to support (links on the classroom)
4.1.1.16	Recursive techniques	 Be familiar with the use of recursive techniques in programming languages (general and base cases and the mechanism for implementation). Be able to solve simple problems using recursion. NOTE: In order to understand the mechanism for implementation, you need to need to understand the following: 4.1.1.15 Role of stack frames in subroutine calls Be able to explain how a stack frame is used with subroutine calls to store: return addresses parameters local variables. 		
4.2.1.2	Single- and multidimensional arrays (or equivalent)	Use arrays (or equivalent) in the design of solutions to simple problems. A one-dimensional array is a useful way of representing a vector. A two-dimensional array is a useful way of representing a matrix. More generally, an n-dimensional array is a set of elements with the same data type that are indexed by a tuple of n integers, where a tuple is an ordered list of elements.		

4.2.1.4	Abstract data	Be able to distinguish between static and dynamic structures			
	types/data structures	and compare their uses, as well as explaining the advantages			
		and disadvantages of each.			
		Note: it would also be helpful to understand the following			
		concepts and uses of:			
		• queues (linear, circular, priority)			
		• stack			
		• graph			
		• tree			
		hash table			
		dictionary			
		• vector.			
4.2.2	Queues	Be able to describe and apply the following to linear queues,			
		circular queues and priority queues:			
		• add an item			
		• remove an item			
		 test for an empty queue 			
		 test for a full queue. 			
4.2.3	Stacks	Be able to describe and apply the following operations:			
		• push			
		• pop			
		peek or top			
		 test for empty stack 			
		• test for stack full.			
		Peek or top returns the value of the top element			
		without removing it.			

4.2.4	Graphs	Be aware of a graph as a data structure used to represent more complex relationships.			
		AND			
		Be able to explain the terms: • graph • weighted graph • vertex/node • edge/arc • undirected graph • directed graph.			
		AND Know how an adjacency matrix and an adjacency list may be			
		used to represent a graph.			
4.2.5	Trees	Know that a tree is a connected, undirected graph with no cycles.			
		NOTE: a tree does not have to have a root.			
4.3.1	Graph-traversal	Simple graph-traversal algorithms Be able to trace breadth- first and depth-first search algorithms and describe typical applications of both.			
		Breadth-first: shortest path for an unweighted graph. Depth-first: Navigating a maze.			

4.3.4	Searching algorithms	4.3.4.1 Linear search			
		Know and be able to trace and analyse the complexity of the			
		linear search algorithm.			
		Time complexity is $O(n)$.			
		4.3.4.2 Binary search			
		the binary search algorithm			
		Time complexity is $O(\log n)$.			
		4.3.4.3 Binary tree search			
		Be able to trace and analyse the time complexity of the binary			
		tree search algorithm.			
		Time complexity is $O(\log n)$.			
		NOTE: In order to understand binary tree search, you should			
		also understand 4.3.2 Tree-traversal (4.3.2.1 Simple tree-			
		traversal algorithms):			
		Be able to trace the tree-traversal algorithms:			
		• pre-order			
		• post-order			
435	Sorting algorithms	• In-order. 4 3 5 1 Bubble sort			
4.0.0		Know and be able to trace and analyse the time complexity of			
		the bubble sort algorithm.			
		This is included as an example of a particularly inefficient			
		sorting algorithm, time-wise. Time complexity is $O(n^2)$.			
		4.3.5.2 Merge sort			
		Be able to trace and analyse the time complexity of the merge			
		sort algorithm.			
		The 'merge' sort is an example of 'Divide and Conquer'			
		approach to problem solving. Time complexity is O(nlog n).			

4.3.6	Optimisation algorithms	 4.3.6.1 Dijkstra's shortest path algorithm Understand and be able to trace Dijkstra's shortest path algorithm. Be aware of applications of shortest path algorithm. Students will not be expected to recall the steps in Dijkstra's shortest path algorithm. NOTE: this links with 4.3.1.1 Simple graph-traversal algorithms 			
4.4.1.1	Problem-solving	Be able to develop solutions to simple logic problems.			
4.4.1.2	Following and writing algorithms	Be able to hand-trace algorithms.			

4.4.4.3	Order of complexity	Be familiar with Big-O notation to express time complexity and			
		be able to apply it to cases where the running time			
		requirements of the algorithm grow in:			
		constant time			
		logarithmic time			
		Inear time			
		polynomial time			
		• exponential time.			
		NOTE: In order to understand Big-O fully, it is advisable to			
		revise the following areas as well in section 4.4.4 Classification			
		of algorithms:			
		4.4.4.1 Comparing algorithms			
		Understand that algorithms can be compared by expressing			
		their complexity as a function relative to the size of the			
		problem. Understand that the size of the problem is the key			
		issue.			
		Understand that some algorithms are more efficient:			
		• time-wise than other algorithms			
		• space-wise than other algorithms.			
		Efficiently implementing automated abstractions means			
		designing data models and algorithms to run quickly while			
		taking up the minimal amount of resources such as memory.			
					ſ
		4.4.4.2 Maths for understanding Big-0 notation			
		Be familiar with the mathematical concept of a function as a			
		mapping from one set of values, the domain, to another set of			
		values, drawn from the co-domain, for example $\mathbb{N} \to \mathbb{N}$.			

4.4.4.7 Paper 2	Halting problem	Describe the Halting problem (but not prove it), that is the unsolvable problem of determining whether any program will eventually stop if given particular input. Understand the significance of the Halting problem for computation. The Halting problem demonstrates that there are some problems that cannot be solved by a computer.		
raper z		-		
Specification Ref	Name of topic	Content		
4.5.2	Number bases	 Be familiar with the concept of a number base, in particular: decimal (base 10) binary (base 2) hexadecimal (base 16) Convert between decimal, binary and hexadecimal number bases. Be familiar with, and able to use, hexadecimal as a shorthand for binary and to understand why it is used in this way 		

4.5.3	Units of information	Know that:		
		 the bit is the fundamental unit of information 		
		 a byte is a group of 8 bits. 		
		Know that the 2n different values can be represented with n		
		bits		
		Know that quantities of bytes can be described using binary		
		prefixes representing powers of 2 or using decimal prefixes		
		representing powers of 10, eg one kibibyte is written as 1KiB =		
		2^{10} B and one kilopyte is written as 1 kB = 10^{3} B.		
		Know the names, symbols and corresponding powers of 2 for		
		the binary prefixes:		
		• kibi $Ki = 2^{10}$		
		• mebi. Mi - 2^20		
		• aibi. Gi - 2^30		
		• tebi. Ti - 2^40		
		Know the names, symbols and corresponding powers of 10 for		
		the decimal prefixes:		
		• kilo, k - 10 [^] 3		
		• mega, M - 10^6		
		• giga, G - 10^9		
		• tera, T - 10^12		
1.5.4.0				
4.5.4.2	Unsigned binary	Be able to:		
	arithmetic	add two unsigned binary integers		
1513	Signed bipary using	 Multiply two unsigned binary integers. Know that signed binary can be used to represent pegative. 		
4.0.4.0	two's complement	integers and that one possible coding scheme is two's		
	two 3 complement	complement		
		oonplomona.		
		Know how to:		
		 represent negative and positive integers in two's complement 		
		 perform subtraction using two's complement 		
		• calculate the range of a given number of bits, n.		

4.5.4.4	Numbers with a	Know how numbers with a fractional part can be represented		
	fractional part	in:		
		fixed point form in binary in a given number of bits		
		• hoating point form in binary in a given number of bits.		
		Be able to convert for each representation from:		
		decimal to binary of a given number of bits		
		 binary to decimal of a given number of bits. 		
4.5.4.6	Absolute and relative	Be able to calculate the absolute error of numerical data		
	errors	stored and processed in computer systems.		
		Be able to calculate the relative error of numerical data stored		
		and processed in computer systems.		
4.5.4.8	Normalisation of	Know why floating point numbers are normalised and be able		
	floating point form	to normalise unnormalised floating point numbers with		
4567	Digital representation	Positive of negative mantissas		
4.5.6.7	of sound	Calculate sound sample sizes in bytes.		
4.5.6.8	Musical Instrument	Describe the purpose of MIDI and the use of event messages		
	Digital Interface	in MIDI.		
		Describe the advantages of using MIDI files for representing		
		music.		
4.6.1.2	Classification of	Explain what is meant by:		
	software	• system software		
		• application software.		
		Understand the need for, and attributes of, different types of		
		software.		
4.6.1.3	System Software	Understand the need for, and functions of the following system		
		software:		
		• operating systems (OSs)		
		Utility programs Ibrorios		
		• translators (compiler assembler interpreter)		

4.6.1.4	Role of an operating	Know that the OS handles resource management, managing			
	system (OS)	hardware to allocate processors, memories and I/O devices			
		among competing processes.			
4.6.2	Classification of	Know that low-level languages are considered to be:			
	programming	machine-code			
	languages	assembly language.			
		Describe machine-code language and assembly language.			
		Understand the advantages and disadvantages of machine-			
		code and assembly language programming compared with			
		high-level language programming.			
4.6.4	Logic Gates	Construct truth tables for the following logic gates:			
		• NOR			
		NOR.			
		Be familiar with drawing and interpreting logic gate circuit			
		diagrams involving one or more of the above gates			
		Complete a truth table for a given logic gate circuit.			
		Write a Daalaan ammaasian faa a siyaa laaja asta siyaajit			
		white a Boolean expression for a given logic gate circuit.			
		Draw an equivalent logic gate circuit for a given Boolean			
		expression.			
		Recognise and trace the logic of the circuits of a half-adder			
		and a full-adder.			
		Construct the circuit for a half-adder.			
		Be familiar with the use of the edge-triggered D type flip-flop			
		as a memory unit.			

4.6.5	Boolean Algebra	Be familiar with the use of Boolean identities and De Morgan's laws to manipulate and simplify Boolean expressions.		
4.7.1	Internal hardware components of a computer	Be able to explain the difference between von Neumann and Harvard architectures and describe where each is typically used.		
4.7.2	The stored program concept	Be able to describe the stored program concept: machine code instructions stored in main memory are fetched and executed serially by a processor that performs arithmetic and logical operations.		
4.7.3.3	The processor instruction set	Understand the term 'processor instruction set' and know that an instruction set is processor specific. Know that instructions consist of an opcode and one or more operands (value, memory address or register).		
4.7.3.4	Addressing Modes	Understand and apply immediate and direct addressing modes.		
4.7.3.5	Machine- code/assembly language operations	Understand and apply the basic machine-code operations of: • load • add • subtract • store • branching (conditional and unconditional) • compare • logical bitwise operators (AND, OR, NOT, XOR) • logical • shift right • shift left • halt. Use the basic machine-code operations above when machine- code instructions are expressed in mnemonic form- assembly language, using immediate and direct addressing.		
4.7.4.1	Input and Output devices	Know the main characteristics, purposes and suitability of the devices and understand their principles of operation.		

4.7.4.2	Secondary storage devices	Explain the need for secondary storage within a computer system Know the main characteristics, purposes, suitability and understand the principles of operation of the following devices: • hard disk • optical disk • solid-state disk (SSD).		
4.8.1	Individual (moral), social (ethical), legal and cultural issues and oppurtunities	 Show awareness of current individual (moral), social (ethical), legal and cultural opportunities and risks of computing. Understand that: developments in computer science and the digital technologies have dramatically altered the shape of communications and information flows in societies, enabling massive transformations in the capacity to: monitor behaviour amass and analyse personal information distribute, publish, communicate and disseminate personal information. computer scientists and software engineers therefore have power, as well as the responsibilities that go with it, in the algorithms that they devise and the code that they deploy. software and their algorithms embed moral and cultural values. the issue of scale, for software the whole world over, creates potential for individual computer scientists and software engineers to produce great good, but with it comes the ability to cause great harm. Be able to discuss the challenges facing legislators in the digital age. 		

401	Communication	Define carial and parallel transmission methods and discuss		
4.9.1	Communication	beine senar and paraller transmission methods and discuss		
		the advantages of serial over parallel transmission.		
		Define and compare synchronous and asynchronous data		
		transmission.		
		Describe the purpose of start and stop bits in asynchronous		
		data transmission		
		Definer		
		baud rate		
		• bit rate		
		bandwidth		
		latency		
		• protocol		
		protocol.		
		Differentiate between boud rate and bit rate		
		Differentiate between baud rate and bit rate.		
		Understand the relationship between bit rate and bandwidth.		
4.9.2.2	Types of networking	Explain the following and describe situations where they might		
	between hosts	be used:		
		• peer-to-peer networking		
		 peer-to-peer networking aliant conver networking 		
4024	The internet and have	• client-server here working.		
4.9.3.1	The internet and now	Describe the term uniform resource locator (URL) in the		
	it works	context of internetworking.		
		Explain the terms 'fully qualified domain name' (FQDN),		
		'domain name' and 'IP address'.		
		Describe how domain names are organised		
		Boothso now domain namos are organised.		
		Linderstend the number and function of the density		
		Understand the purpose and function of the domain service		
		and its reliance on the Domain Name Server (DNS) system.		
4.9.4.11	Thin- versus thick-	Compare and contrast thin-client computing with thick-client		
	client computing	computing.		

4 10 1	Conceptual data	Produce a data model from given data requirements for a		
	models and entity	simple scenario involving multiple entities		
	relationship modelling			
		Produce entity relationship diagrams representing a data		
		model and entity descriptions in the form: Entity1 (Attribute1.		
		Attribute2).		
4.10.2	Relational databases	Explain the concept of a relational database.		
		Be able to define the terms:		
		• attribute		
		• primary key		
		composite primary key		
		• foreign key.		
		NOTE: The content in this section will not be directly assessed		
		but students will need to have an understanding of it to answer		
		other questions		
4.10.3	Database design and normalisation	Normalise relations to third normal form.		
	techniques	Understand why databases are normalised.		
4.10.4	Structured Query	Be able to use SQL to retrieve, update, insert and delete data		
	Language (SQL)	from multiple tables of a relational database.		
		Be able to use SQL to define a database table		
4.12.1.3	Function application	Know that function application means a function applied to its		
		arguments.		
4.12.1.5	Compostition of functions	Know what is meant by composition of functions.		
4.12.2	Writing functional	Show experience of constructing simple programs in a		
	programs	functional programming language.		
		Higher-order functions.		
		Have experience of using the following in a functional		
		programming language:		
		• map		
		• filter		
		reduce or fold.		