

	AQA Physics (8463) from 2016 Topics P4.5. Forces	<u>. </u>		
Topic	Student Checklist	R	Α	G
	Identify and describe scalar quantities and vector quantities			-
	Identify and give examples of forces as contact or non-contact forces			-
	Describe the interaction between two objects and the force produced on each as a vector			
ctions	Describe weight and explain that its magnitude at a point depends on the gravitational field strength			
era	Calculate weight by recalling and using the equation: [W = mg]	1		
4.5.1 Forces and their interactions	Represent the weight of an object as acting at a single point which is referred to as the object's 'centre of mass'			
ţ	Calculate the resultant of two forces that act in a straight line	1		
pu	HT ONLY: describe examples of the forces acting on an isolated object or system			
e sa	HT ONLY: Use free body diagrams to qualitatively describe examples where several			
L Force	forces act on an object and explain how that leads to a single resultant force or no force			
4.5.1	HT ONLY: Use free body diagrams and accurate vector diagrams to scale, to resolve multiple forces and show magnitude and direction of the resultant			
	HT ONLY: Use vector diagrams to illustrate resolution of forces, equilibrium			
	situations and determine the resultant of two forces, to include both magnitude and direction			
e	Describe energy transfers involved when work is done and calculate the work done by			
dor gy	recalling and using the equation: $[W = Fs]$			
.2 Work do and energy	Describe what a joule is and state what the joule is derived from			
d e	Convert between newton-metres and joules.			
4.5.2 Work done and energy	Explain why work done against the frictional forces acting on an object causes a rise in the temperature of the object			
	Describe examples of the forces involved in stretching, bending or compressing an object			
	Explain why, to change the shape of an object (by stretching, bending or compressing), more than one force has to be applied – this is limited to stationary objects only			
sticity	Describe the difference between elastic deformation and inelastic deformation caused by stretching forces			
nd ela	Describe the extension of an elastic object below the limit of proportionality and calculate it by recalling and applying the equation: [F = ke]			
4.5.3 Forces and elasticity	Explain why a change in the shape of an object only happens when more than one force is applied			
5	Describe and interpret data from an investigation to explain possible causes of a linear			
ц.	and non-linear relationship between force and extension			
4	Calculate work done in stretching (or compressing) a spring (up to the limit of			
	proportionality) by applying, but not recalling, the equation: $[E_e = \frac{1}{2}ke^2]$			
	Required practical 6: investigate the relationship between force and extension for a			
	spring.			
nts, ars	PHY ONLY: State that a body in equilibrium must experience equal sums of clockwise and anticlockwise moments, recall and apply the equation: [M = Fd]			
ner ge	PHY ONLY: Apply the idea that a body in equilibrium experiences an equal total of			
lon	clockwise and anti-clockwise moments about any pivot		L	
5 5 5 5	PHY ONLY: Explain why the distance, d, must be taken as the perpendicular distance			
4.5.4 Moments, levers and gears	from the line of action of the force to the pivot			
7 2	PHY ONLY: Explain how levers and gears transmit the rotational effects of forces			

	PHY ONLY: Describe a fluid as either a liquid or a gas and explain that the pressure in a		
4.5.5 Pressure and pressure differences in fluid	fluid causes a force to act at right angles (normal) to the surface of its container		1
	PHY ONLY: Recall and apply the equation: $[p = F/A]$		
	PHY & HT ONLY: Explain why the pressure at a point in a fluid increases with the height	 	
Pressure and pres differences in fluid	of the column of fluid above and calculate differences in pressure in a liquid by applying		
pra n	$[p = h \rho g]$		
e 9	PHY & HT ONLY: Describe up thrust an object and explain why the density of the fluid	 _	
sul			1
ffe	has an effect on the up thrust experienced by an object submerged in it	 _	
dib	PHY & HT ONLY: Explain why an object floats or sinks, with reference to its weight,		1
.5.	volume and the up thrust it experiences	 _	
	PHY ONLY: Describe a simple model of the Earth's atmosphere and of atmospheric		1
	pressure, explaining why atmospheric pressure varies with height above a surface	 	
	Define distance and displacement and explain why they are scalar or vector quantities	 	
	Express a displacement in terms of both the magnitude and direction	 	
	Explain that the speed at which a person can walk, run or cycle depends on a number of		1
	factors and recall some typical speeds for walking, running, cycling	 	
	Make measurements of distance and time and then calculate speeds of objects in		1
	calculating average speed for non-uniform motion		
	Explain why the speed of wind and of sound through air varies and calculate speed by		1
	recalling and applying the equation: [s = v t]		
	Explain the vector-scalar distinction as it applies to displacement, distance, velocity and		1
	speed		
	HT ONLY: Explain qualitatively, with examples, that motion in a circle involves constant		1
	speed but changing velocity		
	Represent an object moving along a straight line using a distance-time graph, describing		1
	its motion and calculating its speed from the graph's gradient		
	Draw distance-time graphs from measurements and extract and interpret lines and		1
	slopes of distance-time graphs,		
	Describe an object which is slowing down as having a negative acceleration and estimate		1
5	the magnitude of everyday accelerations		
Forces and motion	Calculate the average acceleration of an object by recalling and applying the equation: [a		1
Ĕ	$= \Delta v/t$]		
pue	Represent motion using velocity-time graphs, finding the acceleration from its gradient		1
es s	and distance travelled from the area underneath		
orc	HT ONLY: Interpret enclosed areas in velocity-time graphs to determine distance		1
	travelled (or displacement)		
4.5.6	HT ONLY: Measure, when appropriate, the area under a velocity- time graph by		1
4	counting square		
	Apply, but not recall, the equation: $[v^2 - u^2 = 2as]$		
	PHY ONLY: Draw and interpret velocity-time graphs for objects that reach terminal		1
	velocity	 	
	PHY ONLY: Interpret and explain the changing motion of an object in terms of the forces		1
	acting on it	 	
	PHY ONLY: Explain how an object falling from rest through a fluid due to gravity reaches		1
	its terminal velocity	 	1
	Explain the motion of an object moving with a uniform velocity and identify that forces		1
	must be in effect if its velocity is changing, by stating and applying Newton's First Law	 	1
	Define and apply Newton's second law relating to the acceleration of an object		
	Recall and apply the equation: [F = ma]	 	
	HT ONLY: Describe what inertia is and give a definition		
	Estimate the speed, accelerations and forces of large vehicles involved in everyday		1
	road transport		
	Required practical 7: investigate the effect of varying the force on the acceleration of an		1
	object of constant mass, and the effect of varying the mass of an object on the		1
	acceleration		1

Apply Newton's Third Law to examples of equilib	
Describe factors that can affect a driver's reaction	
Explain methods used to measure human reaction	on times and recall typical results
Interpret and evaluate measurements from simple	le methods to measure the different
reaction times of students	
Evaluate the effect of various factors on thinking	distance based on given data
PHY ONLY: Estimate the distance required for an	emergency stop in a vehicle over a range
of typical speeds	
PHY ONLY: Interpret graphs relating speed to sto	pping distance for a range of vehicles
State typical reaction times and describe how re	action time (and therefore stopping
distance) can be affected by different factors	
Explain methods used to measure human reaction	on times and take, interpret and evaluate
measurements of the reaction times of students	
Explain how the braking distance of a vehicle car	be affected by different factors,
including implications for road safety	•
Explain how a braking force applied to the whee	does work to reduce the vehicle's
kinetic energy and increases the temperature of	the brakes
Explain and apply the idea that a greater braking	force causes a larger deceleration and
explain how this might be dangerous for drivers	

	HT ONLY: Calculate momentum by recalling and applying the equation: [p = mv]	\square	
	HT ONLY: Explain and apply the idea that, in a closed system, the total momentum		
	before an event is equal to the total momentum after the event		
	HT ONLY: Describe examples of momentum in a collision		
Ę	PHY & HT ONLY: Complete conservation of momentum calculations involving two		
inti	objects		
4.5.7 Momentum	PHY & HT ONLY: Explain that when a force acts on an object that is moving, or able to		
Š	move, a change in momentum occurs		
2	PHY & HT ONLY: Calculate a force applied to an object, or the change in momentum it		I
4.5	causes, by applying but not recalling the equation: [$F = m \Delta v / \Delta t$]		
	PHY & HT ONLY: Explain that an increased force delivers an increased rate of change of		
	momentum		
	PHY & HT ONLY: Apply the idea of rate of change of momentum to explain safety		I
	features such as air bags, seat belts, helmets and cushioned surfaces		

	AQA Physics (8463) from 2016 Topics P4.6. Waves			
Topic	Student Checklist	R	Α	G
	Describe waves as either transverse or longitudinal, defining these waves in terms of			
	the direction of their oscillation and energy transfer and giving examples of each			
	Define waves as transfers of energy from one place to another, carrying information			
	Define amplitude, wavelength, frequency, period and wave speed and Identify them			
	where appropriate on diagrams			
	State examples of methods of measuring wave speeds in different media and Identify			
	the suitability of apparatus of measuring frequency and wavelength			
	Calculate wave speed, frequency or wavelength by applying, but not recalling, the			
	equation: [$v = f \lambda$] and calculate wave period by recalling and applying the equation: [$T = 1/f$]			
	Identify amplitude and wavelength from given diagrams			
	Describe a method to measure the speed of sound waves in air			
	Describe a method to measure the speed of ripples on a water surface			
ds	PHY ONLY: Demonstrate how changes in velocity, frequency and wavelength are inter-			
ili	related in the transmission of sound waves from one medium to another			
4.6.1 Waves in air, fluids and solids	Required practical 8: make observations to identify the suitability of apparatus to			
s ar	measure the frequency, wavelength and speed of waves in a ripple tank and waves in a			
ipir	solid			
, flı	PHY ONLY: Discuss the importance of understanding both mechanical and			
air	electromagnetic waves by giving examples, such as designing comfortable and safe			
in 5	structures and technologies			
ve	PHY ONLY: Describe a wave's ability to be reflected, absorbed or transmitted at the			
Wa	boundary between two different materials			
5.1	PHY ONLY: Draw the reflection of a wave at a surface by constructing ray diagrams			
4.6	Required practical 9 (physics only): investigate the reflection of light by different types			
	of surface and the refraction of light by different substances.			
	PHY & HT ONLY: Describe, with examples, processes which convert wave			
	disturbances between sound waves and vibrations in solids			
	PHY & HT ONLY: Explain why such processes only work over a limited frequency			
	range and the relevance of this to the range of human hearing, which is from 20 Hz to			
	20 kHz	-		
	PHY & HT ONLY: Define ultrasound waves and explain how these are used to form			
	images of internal structures in both medical and industrial imaging	-		
	PHY & HT ONLY: Compare the two types of seismic wave produced by earthquakes			
	with reference to the media they can travel in and the evidence they provide of the			
	structure of the Earth			
	PHY & HT ONLY: Describe how echo sounding using high frequency sound waves is			
	used to detect objects in deep water and measure water depth			

	Describe what electromagnetic waves are and explain how they are grouped		
	List the groups of electromagnetic waves in order of wavelength		
	Explain that because our eyes only detect a limited range of electromagnetic waves,		
	they can only detect visible light		
	HT ONLY: Explain how different wavelengths of electromagnetic radiation are		
	reflected, refracted, absorbed or transmitted differently by different substances and		
	types of surface		
	Illustrate the refraction of a wave at the boundary between two different media by		
	constructing ray diagrams	\square	
	HT ONLY: Describe what refraction is due to and illustrate this using wave front		
	diagrams		
	Required practical activity 10: investigate how the amount of infrared radiation		
	absorbed or radiated by a surface depends on the nature of that surface.	┢──╋	
	HT ONLY: Explain how radio waves can be produced by oscillations in electrical		
	circuits, or absorbed by electrical circuits	┢──╋	
	Explain that changes in atoms and the nuclei of atoms can result in electromagnetic		
	waves being generated or absorbed over a wide frequency range	\vdash	
	State examples of the dangers of each group of electromagnetic radiation and discuss		
es	the effects of radiation as depending on the type of radiation and the size of the dose		
vav	State examples of the uses of each group of electromagnetic radiation, explaining why each type of electromagnetic wave is suitable for its applications		
ic v	PHY ONLY: State that a lens forms an image by refracting light and that the distance		
net	from the lens to the principal focus is called the focal length		
4.6.2 Electromagnetic waves	PHY ONLY: Explain that images produced by a convex lens can be either real or virtual,		
ron	but those produced by a concave lens are always virtual		
ecti	PHY ONLY: Construct ray diagrams for both convex and concave lenses		-
Ē	PHY ONLY: Calculate magnification as a ratio with no units by applying, but not		-
.6.2	recalling, the formula: [magnification = image height / object height]		
4	PHY ONLY: Explain how the colour of an object is related to the differential absorption,		
	transmission and reflection of different wavelengths of light by the object		
	PHY ONLY: Describe the effect of viewing objects through filters or the effect on light of		
	passing through filters and the difference between transparency and translucency		
	PHY ONLY: Explain why an opaque object has a particular colour, with reference to the		
	wavelengths emitted		
	PHY ONLY: State that all bodies, no matter what temperature, emit and absorb		
	infrared radiation and that the hotter the body, the more infrared radiation it radiates		
	in a given time		
	PHY ONLY: Describe a perfect black body as an object that absorbs all the radiation		
	incident on it and explain why it is the best possible emitter		
	PHY ONLY: Explain why when the temperature is increased, the intensity of every		
	wavelength of radiation emitted increases, but the intensity of the shorter wavelengths		
	increases more rapidly		
	PHY & HT ONLY: Explain and apply the idea that the temperature of a body is related		
	to the balance between incoming radiation absorbed and radiation emitted	\vdash	 _
	PHY & HT ONLY: Describe how the temperature of the Earth as dependent on the		
	rates of absorption and emission of radiation and draw and interpret diagrams that		
	show this		

	AQA Physics (8463) from 2016 Topics P4.7. Magnetism and electromagnetism			
ΤΟΡΙΟ	Student Checklist	R	Α	G
ם ים	Describe the attraction and repulsion between unlike and like poles of			
4.7.1 Permanent and induced magnetism, magnetic forces and fields	permanent magnets and explain the difference between permanent and induced			
ent net ces	magnets			
ermane d magr tic forc fields	Draw the magnetic field pattern of a bar magnet, showing how field strength			
erm d m tic t	and direction are indicated and change from one point to another			
L Pe Ice	Explain how the behaviour of a magnetic compass is related to evidence that the			
.7.1 ndu nag	core of the Earth must be magnetic			
4 = 5	Describe how to plot the magnetic field pattern of a magnet using a compass			
	State examples of how the magnetic effect of a current can be demonstrated			
	and explain how a solenoid arrangement can increase the magnetic effect of the			
	current			
ect	Draw the magnetic field pattern for a straight wire carrying a current and for a			
eff	solenoid (showing the direction of the field)			
tor	PHY ONLY: Interpret diagrams of electromagnetic devices in order to explain how			
о ц	they work			
i ət	HT ONLY: State and use Fleming's left-hand rule and explain what the size of			
5	the induced force depends on			
4.7.2 The motor effect	HT ONLY: Calculate the force on a conductor carrying a current at right angles			
4	to a magnetic field by applying, but not recalling, the equation: [F = BIL]			-
	HT ONLY: Explain how rotation is caused in an electric motor			
	PHY & HT ONLY: Explain how a moving-coil loudspeaker and headphones work			
e	PHY & HT ONLY: Describe the principles of the generator effect, including the			
d t	direction of induced current, effects of Lenz' Law and factors that increase			
ano	induced p.d.			
ers	PHY & HT ONLY: Explain how the generator effect is used in an alternator to			
Ĕ	generate a.c. and in a dynamo to generate d.c.			
d H	PHY & HT ONLY: Draw/interpret graphs of potential difference generated in			
Grio	the coil against time			
tential, trans National Grid	PHY & HT ONLY: Explain how a moving-coil microphone works			
ion	PHY & HT ONLY: Explain how the effect of an alternating current in one coil			
ten Vat	inducing a current in another is used in transformers			
od	PHY & HT ONLY: Explain how the ratio of the potential differences across the			
bed	two coils depends on the ratio of the number of turns on each			
μ	PHY & HT ONLY: Apply the equation linking the p.d.s and number of turns in			
Ĺ	the two coils of a transformer to the currents and the power transfer			
4.7.3 Induced potential, transformers and the National Grid	PHY & HT ONLY: Apply but not recalling the equations: [Vs × Is = Vp × Ip] and [
4	vp / vs = np / ns] for transformers			

	AQA Physics (8463) from 2016 Topics P4.8. Space physics					
TOPIC	Student Checklist	R	Α	G		
of	PHY ONLY: List the types of body that make up the solar system and describe our					
	solar system as part of a galaxy					
bili	PHY ONLY: Explain how stars are formed					
stability satellites	PHY ONLY: Describe the life cycle of a star the size of the Sun and of a star which is					
	much more massive than the Sun					
.1 Solar system; orbital motions;	PHY ONLY: Explain how fusion processes lead to the formation of new elements and					
sy	how supernovas have allowed heavy elements to appear in later solar systems					
olar al n	PHY & HT ONLY: Explain that, for circular orbits, the force of gravity leads to a					
L Sc bita	constantly changing velocity but unchanged speed					
4.8.1 orb	PHY & HT ONLY: Explain that, for a stable orbit, the radius must change if the speed					
4	changes					
	PHY ONLY: Explain, qualitatively, the red-shift of light from galaxies that are receding					
Ĩ	and how this red-shift changes with distance from Earth					
Red-shift	PHY ONLY: Explain why the change of each galaxy's speed with distance is evidence					
Rec	of an expanding universe					
4.8.2	PHY ONLY: Explain how scientists are able to use observations to arrive at theories,					
4.8	such as the Big Bang theory and discuss that there is still much about the universe					
	that is not understood					