Personalised Learning Checklists AQA Physics Paper 1

Горіс	AQA Physics (8463) from 2016 Topics P4.1. Energy Student Checklist	R	Α	Ģ
-	Define a system as an object or group of objects and state examples of changes in the	n	~	
4.1.1 Energy changes in a system, and the ways energy is stored before and after such changes	way energy is stored in a system			
	Describe how all the energy changes involved in an energy transfer and calculate			
	relative changes in energy when the heat, work done or flow of charge in a system			
	changes			
ene	Use calculations to show on a common scale how energy in a system is redistributed			
es es	Calculate the kinetic energy of an object by recalling and applying the equation: $[E_k =$			
ıges in a system, and the ways before and after such changes	½mv²]			
chi	Calculate the amount of elastic potential energy stored in a stretched spring by			ľ
r G g	applying, but not recalling, the equation: $[E_e = \frac{y_e}{ke^2}]$			
r, ai	Calculate the amount of gravitational potential energy gained by an object raised			
fte	above ground level by recalling and applying, the equation: $[E_e = mgh]$			
yst d a	Calculate the amount of energy stored in or released from a system as its			l
an	temperature changes by applying, but not recalling, the equation: $[\Delta E = mc\Delta \theta]$			
ore n	Define the term 'specific heat capacity'			Ī
bef	Required practical 1: investigation to determine the specific heat capacity of one or			
nar	more materials.			
o ≿	Define power as the rate at which energy is transferred or the rate at which work is			
ere B	done and the watt as an energy transfer of 1 joule per second			
<u> </u>	Calculate power by recalling and applying the <i>equations:</i> [P = E/t & P = W/t]			
-	Explain, using examples, how two systems transferring the same amount of energy			
4	can differ in power output due to the time taken			
	State that energy can be transferred usefully, stored or dissipated, but cannot be			
5	created or destroyed and so the total energy in a system does not change			
	Explain that only some of the energy in a system is usefully transferred, with the rest			
iba	'wasted', giving examples of how this wasted energy can be reduced			
	Explain ways of reducing unwanted energy transfers and the relationship between			
	thermal conductivity and energy transferred			
erg	Describe how the rate of cooling of a building is affected by the thickness and thermal			
ation and of energy	conductivity of its walls			
of	Required practical 2: investigate the effectiveness of different materials as thermal			
conservation and dissipation of energy	insulators and the factors that may affect the thermal insulation properties of a			
5	material.			
4.1.2	Calculate efficiency by recalling and applying the equation: [efficiency = useful power			
4.	output / total power input]			
	HT ONLY: Suggest and explain ways to increase the efficiency of an intended energy transfer			
	List the main renewable and non-renewable energy resources and define what a			
al	renewable energy resource is			
	Compare ways that different energy resources are used, including uses in transport,			T
a br	electricity generation and heating			
s National and glo energy resources	Explain why some energy resources are more reliable than others, explaining patterns			\vdash
v re	and trends in their use			1
atic	Evaluate the use of different energy resources, taking into account any ethical and			\vdash
s N ene	environmental issues which may arise			1
4.1.3 National and global energy resources	Justify the use of energy resources, with reference to both environmental issues and			t
4	the limitations imposed by political, social, ethical or economic considerations			l

	AQA Physics (8463) from 2016 Topics P4.2. Electricity			
Торіс	Student Checklist	R	Α	G
-	Draw and interpret circuit diagrams, including all common circuit symbols			
JCe	Define electric current as the rate of flow of electrical charge around a closed circuit			
staı	Calculate charge and current by recalling and applying the formula: [Q = It]			
esis	Explain that current is caused by a source of potential difference and it has the same			
dr	value at any point in a single closed loop of a circuit			
an	Describe and apply the idea that the greater the resistance of a component, the			
nce	smaller the current for a given potential difference (p.d.) across the component			
4.2.1 Current, potential difference and resistance	Calculate current, potential difference or resistance by recalling and applying the equation: [V = IR]			
ble	Required practical 3: Use circuit diagrams to set up and check circuits to investigate			
ntia	the factors affecting the resistance of electrical circuits			
ote	Define an ohmic conductor			
ă	Explain the resistance of components such as lamps, diodes, thermistors and LDRs			
ent	and sketch/interpret IV graphs of their characteristic electrical behaviour			
nrr	Explain how to measure the resistance of a component by drawing an appropriate			
10	circuit diagram using correct circuit symbols			
4.2	Required practical 4: use circuit diagrams to construct appropriate circuits to			
7	investigate the I-V characteristics of a variety of circuit elements			
	Show by calculation and explanation that components in series have the same			
lel	current passing through them			
ara	Show by calculation and explanation that components connected in parallel have			
dр	the same the potential difference across each of them			
4.2.2 Series and parallel circuits	Calculate the total resistance of two components in series as the sum of the			
'ies circ	resistance of each component using the equation: $[R_{total} = R_1 + R_2]$			
Ser	Explain qualitatively why adding resistors in series increases the total resistance			
2.2	whilst adding resistors in parallel decreases the total resistance			
4	Solve problems for circuits which include resistors in series using the concept of			
	equivalent resistance			
pu	Explain the difference between direct and alternating voltage and current, stating			
ss a	what UK mains is			
use	Identify and describe the function of each wire in a three-core cable connected to			
tic ety	the mains			
nestic safety	State that the potential difference between the live wire and earth $(0 V)$ is about 230			
noC	V and that both neutral wires and our bodies are at, or close to, earth potential (0 V)			
4.2.3 Domestic uses and safety	Explain that a live wire may be dangerous even when a switch in the mains circuit is			
	open by explaining the danger of providing any connection between the live wire and earth			
-	l carui			

Personalised Learning Checklists AQA Physics Paper 1

		<u> </u>	
4.2.4 Energy transfers	Explain how the power transfer in any circuit device is related to the potential		
	difference across it and the current through it		
	Calculate power by recalling and applying the equations: $[P = VI]$ and $[P = I^2 R]$		
	Describe how appliances transfer energy to the kinetic energy of motors or the		
	thermal energy of heating devices		
	Calculate and explain the amount of energy transferred by electrical work by		
	recalling and applying the equations: [E = Pt] and [E = QV]		
	Explain how the power of a circuit device is related to the potential difference across		
	it, the current through it and the energy transferred over a given time.		
4 E	Describe, with examples, the relationship between the power ratings for domestic		
t.2.	electrical appliances and the changes in stored energy when they are in use		
	Identify the National Grid as a system of cables and transformers linking power		
	stations to consumers		
	Explain why the National Grid system is an efficient way to transfer energy, with		
	reference to change in potential difference reducing current		
	PHY ONLY: Describe the production of static electricity by the rubbing of insulating		
	surfaces		
	PHY ONLY: Describe evidence that charged objects exert forces of attraction or		
lity	repulsion on one another when not in contact		
tric	PHY ONLY: Explain how the transfer of electrons between objects can explain the		
lec	phenomenon of static electricity, including how insulators are charged and sparks are		
ice	created		
4.2.5 Static electricity	PHY ONLY: Draw the electric field pattern for an isolated charged sphere		
S	PHY ONLY: Explain the concept of an electric field and the decrease in its strength as		
1.2.	the distance from it increases		
	PHY ONLY: Explain how the concept of an electric field helps to Explain the non-		
	contact force between charged objects as well as other electrostatic phenomena such		
	as sparking		
	as sparking		

Personalised Learning Checklists AQA Physics Paper 1

	AQA Physics (8463) from 2016 Topics P4.3. Particle model of matter			
TOPIC	Student Checklist	R	Α	G
he	Calculate the density of a material by recalling and applying the equation: [ρ = m/V]			
	Recognise/draw simple diagrams to model the difference between solids, liquids and			
id t	gases			
ar	Use the particle model to explain the properties of different states of matter and			
ate	differences in the density of materials			
ne st	Required practical 5: use appropriate apparatus to make and record the			
4.3.1 Changes of state and the particle model	measurements needed to determine the densities of regular and irregular solid objects and liquids			
ъ.	Recall and describe the names of the processes by which substances change state			
3.1	Use the particle model to explain why a change of state is reversible and affects the			
4	properties of a substance, but not its mass			
	State that the internal operation of a system is stored in the atoms and molecules that			
p	State that the internal energy of a system is stored in the atoms and molecules that make up the system			
y ar s	Explain that internal energy is the total kinetic energy and potential energy of all the			
fer	particles in a system			
enc	Calculate the change in thermal energy by applying but not recalling the equation			
nal y tr	$[\Delta E = m c \Delta \theta]$			
4.3.2 Internal energy and energy transfers	Calculate the specific latent heat of fusion/vaporisation by applying, but not recalling, the equation: [<i>E</i> = <i>mL</i>]			
	Interpret and draw heating and cooling graphs that include changes of state			
4	Distinguish between specific heat capacity and specific latent heat			
	Explain why the molecules of a gas are in constant random motion and that the			
é	higher the temperature of a gas, the greater the particles' average kinetic energy			
Inse	Explain, with reference to the particle model, the effect of changing the temperature			
Dres	of a gas held at constant volume on its pressure			
p	Calculate the change in the pressure of a gas or the volume of a gas (a fixed mass held			
l an	at constant temperature) when either the pressure or volume is increased or			
ode	decreased			
ŭ	PHY ONLY: Explain, with reference to the particle model, how increasing the volume in			
cle	which a gas is contained can lead to a decrease in pressure when the temperature is			
arti	constant			
8 8	PHY ONLY: Calculate the pressure for a fixed mass of gas held at a constant			
4.3.3 Particle model and pressure	temperature by applying, but not recalling, the equation: [pV = constant]			
4	PHY & HT ONLY: Explain how work done on an enclosed gas can lead to an increase			
	in the temperature of the gas, as in a bicycle pump			

	AQA Physics (8463) from 2016 Topics P4.4. Atomic structure			
TOPIC	Student Checklist	R	Α	G
4.4.1 Atoms and isotopes	Describe the basic structure of an atom and how the distance of the charged particles			
	vary with the absorption or emission of electromagnetic radiation			
	Define electrons, neutrons, protons, isotopes and ions			
L Atoms sotopes	Relate differences between isotopes to differences in conventional representations of			
Atc	their identities, charges and masses			
4.1 is	Describe how the atomic model has changed over time due to new experimental			
4.	evidence, inc discovery of the atom and scattering experiments (inc the work of James			
	Chadwick)			
	Describe and apply the idea that the activity of a radioactive source is the rate at			
	which its unstable nuclei decay, measured in Becquerel (Bq) by a Geiger-Muller tube			
	Describe the penetration through materials, the range in air and the ionising power			
E	for alpha particles, beta particles and gamma rays			
atic	Apply knowledge of the uses of radiation to evaluate the best sources of radiation to			
adia	use in a given situation			
ar a	Use the names and symbols of common nuclei and particles to complete balanced			
clea	nuclear equations, by balancing the atomic numbers and mass numbers			
nu	Define half-life of a radioactive isotope			
pu	HT ONLY: Determine the half-life of a radioactive isotope from given information			
s a	and calculate the net decline, expressed as a ratio, in a radioactive emission after a			
4.4.2 Atoms and nuclear radiation	given number of half-lives			
At	Compare the hazards associated with contamination and irradiation and outline			
4.2	suitable precautions taken to protect against any hazard the radioactive sources may			
4	present			
	Discuss the importance of publishing the findings of studies into the effects of			
	radiation on humans and sharing findings with other scientists so that they can be			
	checked by peer review			
a r	PHY ONLY: State, giving examples, that background radiation is caused by natural and			
ctiv atic	man-made sources and that the level of radiation may be affected by occupation			
uses of radioactive ackground radiation	and/or location			
adi d r	PHY ONLY: Explain the relationship between the instability and half-life of radioactive			
of r	isotopes and why the hazards associated with radioactive material differ according to			
es (the half-life involved			
us ack	PHY ONLY: Describe and evaluate the uses of nuclear radiation in exploration of			
and of b	internal organs and controlling or destroying unwanted tissue			
	PHY ONLY: Evaluate the perceived risks of using nuclear radiation in relation to given			
4.4.3 Hazards emissions and	data and consequences			
Haz	PHY ONLY: Describe nuclear fission	<u> </u>		
.3 I Ssic	PHY ONLY: Draw/interpret diagrams representing nuclear fission and how a chain			
4.4.3 Hazards emissions and	reaction may occur	<u> </u>		
	PHY ONLY: Describe nuclear fusion			