

	AQA TRILOGY Physics (8464) from 2016 Topics T6.1. Energy			
Торіс	Student Checklist	R	Α	G
	Define a system as an object or group of objects and state examples of changes in the			
ore	way energy is stored in a system			
s sto	Describe how all the energy changes involved in an energy transfer and calculate			
iy is	relative changes in energy when the heat, work done or flow of charge in a system			
erg	changes			
en	Use calculations to show on a common scale how energy in a system is redistributed			
6.1.1 Energy changes in a system, and the ways energy is stored before and after such changes	Calculate the kinetic energy of an object by recalling and applying the equation: $\int E_k =$			
e v Jan	½mv ²]			
h ch h ch	Calculate the amount of elastic potential energy stored in a stretched spring by			
and sucl	applying, but not recalling, the equation: $[E_e = \frac{1}{2}ke^2]$			
e ja	Calculate the amount of gravitational potential energy gained by an object raised			
aft	above ground level by recalling and applying, the equation: $[E_e = mgh]$			
ys i bnd	Calculate the amount of energy stored in or released from a system as its			
in a	temperature changes by applying, but not recalling, the equation: $[\Delta E = mc\Delta \theta]$ Define the term 'specific heat capacity'			
efo				
ang b	Required practical 14: investigation to determine the specific heat capacity of one or			
, ch	more materials. Define power as the rate at which energy is transferred or the rate at which work is	-		
irgy	done and the watt as an energy transfer of 1 joule per second			
Ene	Calculate power by recalling and applying the <i>equations:</i> [<i>P</i> = <i>E</i> / <i>t</i> & <i>P</i> = <i>W</i> / <i>t</i>]			
	Explain, using examples, how two systems transferring the same amount of energy			
6.3	can differ in power output due to the time taken			
-	State that energy can be transferred usefully, stored or dissipated, but cannot be			
tior	created or destroyed and so the total energy in a system does not change			
pat	Explain that only some of the energy in a system is usefully transferred, with the rest			
lissi	'wasted', giving examples of how this wasted energy can be reduced			
pby	Explain ways of reducing unwanted energy transfers and the relationship between			
ation and of energy	thermal conductivity and energy transferred			
tion f er	Describe how the rate of cooling of a building is affected by the thickness and thermal			
, vat	conductivity of its walls			
Isel	Calculate efficiency by recalling and applying the equation: <i>[efficiency = useful power</i>			
Conservation and dissipation of energy	output / total power input]			
2	HT ONLY: Suggest and explain ways to increase the efficiency of an intended energy			
6.1	transfer			
a	List the main renewable and non-renewable energy resources and define what a			
6.1.3 National and global energy resources	renewable energy resource is			
	Compare ways that different energy resources are used, including uses in transport,			
	electricity generation and heating Explain why some energy resources are more reliable than others, explaining patterns	-		
	and trends in their use			
	Evaluate the use of different energy resources, taking into account any ethical and	<u> </u>		
	environmental issues which may arise			
.1.3	Justify the use of energy resources, with reference to both environmental issues and	-		
9	the limitations imposed by political, social, ethical or economic considerations			

	AQA TRILOGY Physics (8464) from 2016 Topics T6.2. Electricity			
Торіс	Student Checklist	R	Α	G
	Draw and interpret circuit diagrams, including all common circuit symbols			
ec	Define electric current as the rate of flow of electrical charge around a closed circuit			
star	Calculate charge and current by recalling and applying the formula: [Q = It]			
esis	Explain that current is caused by a source of potential difference and it has the same			
z p	value at any point in a single closed loop of a circuit			
an	Describe and apply the idea that the greater the resistance of a component, the			
nce	smaller the current for a given potential difference (p.d.) across the component			
6.2.1 Current, potential difference and resistance	Calculate current, potential difference or resistance by recalling and applying the equation: [V = IR]			
ble	Required practical 15: Use circuit diagrams to set up and check circuits to investigate			
ntia	the factors affecting the resistance of electrical circuits			
ote	Define an ohmic conductor			
ğ	Explain the resistance of components such as lamps, diodes, thermistors and LDRs			
ent	and sketch/interpret IV graphs of their characteristic electrical behaviour			
urr	Explain how to measure the resistance of a component by drawing an appropriate			
10	circuit diagram using correct circuit symbols			
6.2	Required practical 16: use circuit diagrams to construct appropriate circuits to			
_	investigate the I–V characteristics of a variety of circuit elements			
	Show by calculation and explanation that components in series have the same			
lel	current passing through them			
ara	Show by calculation and explanation that components connected in parallel have			
d þ s	the same the potential difference across each of them			
6.2.2 Series and parallel circuits	Calculate the total resistance of two components in series as the sum of the			
ies circ	resistance of each component using the equation: $[R_{total} = R_1 + R_2]$			
Ser	Explain qualitatively why adding resistors in series increases the total resistance			
2.2	whilst adding resistors in parallel decreases the total resistance			
6.3	Solve problems for circuits which include resistors in series using the concept of			
	equivalent resistance			
pu	Explain the difference between direct and alternating voltage and current, stating			
sa	what UK mains is			
6.2.3 Domestic uses and safety	Identify and describe the function of each wire in a three-core cable connected to			
	the mains			
	State that the potential difference between the live wire and earth (0 V) is about 230			
	V and that both neutral wires and our bodies are at, or close to, earth potential (0 V)			
	Explain that a live wire may be dangerous even when a switch in the mains circuit is			
	open by explaining the danger of providing any connection between the live wire and			
-	earth			

Personalised Learning Checklists AQA Physics Paper 1

	Provide the formation of a second second formation of a second sector of a second se	
	Explain how the power transfer in any circuit device is related to the potential	
	difference across it and the current through it	
	Calculate power by recalling and applying the equations: $[P = VI]$ and $[P = I^2 R]$	
6.2.4 Energy transfers	Describe how appliances transfer energy to the kinetic energy of motors or the	
	thermal energy of heating devices	
lsu	Calculate and explain the amount of energy transferred by electrical work by	
tra	recalling and applying the equations: [E = Pt] and [E = QV]	
7gV	Explain how the power of a circuit device is related to the potential difference across	
le	it, the current through it and the energy transferred over a given time.	
4	Describe, with examples, the relationship between the power ratings for domestic	
5.2.	electrical appliances and the changes in stored energy when they are in use	
Ŭ	Identify the National Grid as a system of cables and transformers linking power	
	stations to consumers	
	Explain why the National Grid system is an efficient way to transfer energy, with	
	reference to change in potential difference reducing current	

Personalised Learning Checklists AQA Physics Paper 1

	AQA TRILOGY Physics (8464) from 2016 Topics T6.3. Particle model of matter			
TOPIC	Student Checklist	R	Α	G
	Calculate the density of a material by recalling and applying the equation: [$\rho = m/V$]			
he	Recognise/draw simple diagrams to model the difference between solids, liquids and			
dt	gases			
ear	Use the particle model to explain the properties of different states of matter and			
tate ode	differences in the density of materials			
i n of st	Required practical 17: use appropriate apparatus to make and record the			
anges of state particle mode	measurements needed to determine the densities of regular and irregular solid objects and liquids			
6.3.1 Changes of state and the particle model	Recall and describe the names of the processes by which substances change state			
3.1	Use the particle model to explain why a change of state is reversible and affects the			
9	properties of a substance, but not its mass			
ъ	State that the internal energy of a system is stored in the atoms and molecules that			
an	make up the system			
rgy fers	Explain that internal energy is the total kinetic energy and potential energy of all the			
ene	particles in a system			├───
6.3.2 Internal energy and energy transfers	Calculate the change in thermal energy by applying but not recalling the equation $[\Delta E = m c \Delta \theta]$			
Inte ner§	Calculate the specific latent heat of fusion/vaporisation by applying, but not recalling,			
3.2 e	the equation: [E = mL]			├───
9	Interpret and draw heating and cooling graphs that include changes of state Distinguish between specific heat capacity and specific latent heat			<u> </u>
-	Explain why the molecules of a gas are in constant random motion and that the			
a de	higher the temperature of a gas, the greater the particles' average kinetic energy			
6.3.3 Particle model and pressure	Explain, with reference to the particle model, the effect of changing the temperature			
	of a gas held at constant volume on its pressure			
art d p	Calculate the change in the pressure of a gas or the volume of a gas (a fixed mass held			
and	at constant temperature) when either the pressure or volume is increased or			
6.3	decreased			

	AQA TRILOGY Physics (8464) from 2016 Topics T6.4. Atomic structure			
TOPIC	Student Checklist	R	Α	G
6.4.1 Atoms and isotopes	Describe the basic structure of an atom and how the distance of the charged particles			
	vary with the absorption or emission of electromagnetic radiation			
	Define electrons, neutrons, protons, isotopes and ions			
L Atoms isotopes	Relate differences between isotopes to differences in conventional representations of			
Atosof	their identities, charges and masses			
4.1 is	Describe how the atomic model has changed over time due to new experimental			
é.	evidence, inc discovery of the atom and scattering experiments (inc the work of James			
	Chadwick)			
	Describe and apply the idea that the activity of a radioactive source is the rate at			
	which its unstable nuclei decay, measured in Becquerel (Bq) by a Geiger-Muller tube			
	Describe the penetration through materials, the range in air and the ionising power			
u	for alpha particles, beta particles and gamma rays			
ati	Apply knowledge of the uses of radiation to evaluate the best sources of radiation to			
adi	use in a given situation			
arr	Use the names and symbols of common nuclei and particles to complete balanced			
cle	nuclear equations, by balancing the atomic numbers and mass numbers			
nu	Define half-life of a radioactive isotope			
pu	HT ONLY: Determine the half-life of a radioactive isotope from given information			
ls a	and calculate the net decline, expressed as a ratio, in a radioactive emission after a			
ton	given number of half-lives			
At	Compare the hazards associated with contamination and irradiation and outline			ł
6.4.2 Atoms and nuclear radiation	suitable precautions taken to protect against any hazard the radioactive sources may			
	present			
	Discuss the importance of publishing the findings of studies into the effects of			
	radiation on humans and sharing findings with other scientists so that they can be			ł
	checked by peer review			