	AQA TRILOGY Physics (8464) from 2016 Topics T6.5. Forces			
Topic	Student Checklist	R	A	G
	Identify and describe scalar quantities and vector quantities			
	Identify and give examples of forces as contact or non-contact forces			
	Describe the interaction between two objects and the force produced on each as a vector			
actions	Describe weight and explain that its magnitude at a point depends on the gravitational field strength			
ter	Calculate weight by using the equation: [W = mg]			
neir in	Represent the weight of an object as acting at a single point which is referred to as the object's 'centre of mass'			
d th	Calculate the resultant of two forces that act in a straight line			
an	HT ONLY: describe examples of the forces acting on an isolated object or system			
6.5.1 Forces and their interactions	HT ONLY: Use free body diagrams to qualitatively describe examples where several forces act on an object and explain how that leads to a single resultant force or no force			
6.5.	HT ONLY: Use free body diagrams and accurate vector diagrams to scale, to resolve multiple forces and show magnitude and direction of the resultant			
	HT ONLY: Use vector diagrams to illustrate resolution of forces, equilibrium			
	situations and determine the resultant of two forces, to include both magnitude and direction			
done	Describe energy transfers involved when work is done and calculate the work done by using the equation: $[W = Fs]$			
.2 Work do and energy	Describe what a joule is and state what the joule is derived from			
Wo d e	Convert between newton-metres and joules.			
6.5.2 Work done and energy	Explain why work done against the frictional forces acting on an object causes a rise in the temperature of the object			
	Describe examples of the forces involved in stretching, bending or compressing an object			
	Explain why, to change the shape of an object (by stretching, bending or compressing), more than one force has to be applied – this is limited to stationary objects only			
nd elasticity	Describe the difference between elastic deformation and inelastic deformation caused by stretching forces			
nd ela	Describe the extension of an elastic object below the limit of proportionality and calculate it by applying the equation: $[F = ke]$			
orces a	Explain why a change in the shape of an object only happens when more than one force is applied			
6.5.3 Forces a	Describe and interpret data from an investigation to explain possible causes of a linear and non-linear relationship between force and extension			
9	Calculate work done in stretching (or compressing) a spring (up to the limit of proportionality) by applying, but not recalling, the equation: $[E_e = \frac{1}{2}ke^2]$			
	Required practical 18: investigate the relationship between force and extension for a spring.			

	Define distance and displacement and explain why they are scalar or vector quantities	R	A	
	Express a displacement in terms of both the magnitude and direction			-
	Explain that the speed at which a person can walk, run or cycle depends on a number of factors and recall some typical speeds for walking, running, cycling			_
	Make measurements of distance and time and then calculate speeds of objects in calculating average speed for non-uniform motion			
	Explain why the speed of wind and of sound through air varies and calculate speed by applying the equation: [s = vt]			
	Explain the vector–scalar distinction as it applies to displacement, distance, velocity and speed			
	HT ONLY: Explain qualitatively, with examples, that motion in a circle involves constant speed but changing velocity			
	Represent an object moving along a straight line using a distance-time graph, describing its motion and calculating its speed from the graph's gradient			
	Draw distance—time graphs from measurements and extract and interpret lines and slopes of distance—time graphs,			
	Describe an object which is slowing down as having a negative acceleration and estimate the magnitude of everyday accelerations			
	Calculate the average acceleration of an object by applying the equation: [$a = \Delta v/t$]			
	Represent motion using velocity–time graphs, finding the acceleration from its gradient and distance travelled from the area underneath			
	HT ONLY: Interpret enclosed areas in velocity—time graphs to determine distance travelled (or displacement)			
u O	HT ONLY: Measure, when appropriate, the area under a velocity—time graph by counting square			
	Apply, but not recall, the equation: $[v^2 - u^2 = 2as]$			
4.5.4 Forces and motion	Explain the motion of an object moving with a uniform velocity and identify that forces			
S S	must be in effect if its velocity is changing, by stating and applying Newton's First Law Define and apply Newton's second law relating to the acceleration of an object		_	-
O C	Recall and apply the equation: [F = ma]			-
4. T	HT ONLY: Describe what inertia is and give a definition			
4. 0	Estimate the speed, accelerations and forces of large vehicles involved in everyday road transport			•
	Required practical 19: investigate the effect of varying the force on the acceleration of an object of constant mass, and the effect of varying the mass of an object on the acceleration			
	Apply Newton's Third Law to examples of equilibrium situations			
	Explain how an object falling from rest through a fluid due to gravity reaches its terminal velocity			
	Describe factors that can affect a driver's reaction time	\vdash		-
	Explain methods used to measure human reaction times and recall typical results Interpret and evaluate measurements from simple methods to measure the different reaction times of students			
	Evaluate the effect of various factors on thinking distance based on given data			
	State typical reaction times and describe how reaction time (and therefore stopping distance) can be affected by different factors			
	Explain methods used to measure human reaction times and take, interpret and evaluate measurements of the reaction times of students			
	Explain how the braking distance of a vehicle can be affected by different factors, including implications for road safety			
	Explain how a braking force applied to the wheel does work to reduce the vehicle's kinetic energy and increases the temperature of the brakes			-
	Explain and apply the idea that a greater braking force causes a larger deceleration and explain how this might be dangerous for drivers			
	explain how this might be dangerous for drivers HT ONLY: Estimate the forces involved in the deceleration of road vehicles		_	

		R	A	G
4.5.5 Momentum	HT ONLY: Calculate momentum by applying the equation: [p = mv]			
	HT ONLY: Explain and apply the idea that, in a closed system, the total momentum before an event is equal to the total momentum after the event			
	HT ONLY: Describe examples of momentum in a collision			

	AQA TRILOGY Physics (8464) from 2016 Topics T6.6. Waves	-		
Topic	Student Checklist	R	A	G
	Describe waves as either transverse or longitudinal, defining these waves in terms of the direction of their oscillation and energy transfer and giving examples of each			
σ	Define waves as transfers of energy from one place to another, carrying information			
pilo	Define amplitude, wavelength, frequency, period and wave speed and Identify them			
os p	where appropriate on diagrams			
an	State examples of methods of measuring wave speeds in different media and Identify			
spir	the suitability of apparatus of measuring frequency and wavelength			
, flu	Calculate wave speed, frequency or wavelength by applying, but not recalling, the			
6.6.1 Waves in air, fluids and solids	equation: $[v = f \lambda]$ and calculate wave period by applying the equation: $[T = 1/f]$			
ve	Identify amplitude and wavelength from given diagrams			
Ma	Describe a method to measure the speed of sound waves in air			
6.1	Describe a method to measure the speed of ripples on a water surface			
9.0	Required practical 20: make observations to identify the suitability of apparatus to			
	measure the frequency, wavelength and speed of waves in a ripple tank and waves in a			
	solid			
	Describe what electromagnetic waves are and explain how they are grouped		1	
	List the groups of electromagnetic waves in order of wavelength			
	Explain that because our eyes only detect a limited range of electromagnetic waves,			
	they can only detect visible light			
	HT ONLY: Explain how different wavelengths of electromagnetic radiation are reflected, refracted, absorbed or transmitted differently by different substances and types of surface			
aves	Illustrate the refraction of a wave at the boundary between two different media by constructing ray diagrams			
etic wa	HT ONLY: Describe what refraction is due to and illustrate this using wave front diagrams			
Electromagnetic waves	Required practical activity 21: investigate how the amount of infrared radiation absorbed or radiated by a surface depends on the nature of that surface.			
6.6.2 El	HT ONLY: Explain how radio waves can be produced by oscillations in electrical circuits, or absorbed by electrical circuits			
•	Explain that changes in atoms and the nuclei of atoms can result in electromagnetic waves being generated or absorbed over a wide frequency range			
	State examples of the dangers of each group of electromagnetic radiation and discuss			
	the effects of radiation as depending on the type of radiation and the size of the dose			
	State examples of the uses of each group of electromagnetic radiation, explaining why			
	each type of electromagnetic wave is suitable for its applications			

AQA TRILOGY Physics (8464) from 2016 Topics T6.7. Magnetism and electromagnetism					
TOPIC	Student Checklist	R	A	G	
Permanent and ed magnetism, etic forces and fields	Describe the attraction and repulsion between unlike and like poles of permanent magnets and explain the difference between permanent and induced magnets				
ermanent d magnet tic forces fields	Draw the magnetic field pattern of a bar magnet, showing how field strength and direction are indicated and change from one point to another				
6.7.1 Perm induced n magnetic	Explain how the behaviour of a magnetic compass is related to evidence that the core of the Earth must be magnetic				
. i. i.	Describe how to plot the magnetic field pattern of a magnet using a compass				
Ħ	State examples of how the magnetic effect of a current can be demonstrated and explain how a solenoid arrangement can increase the magnetic effect of the current				
r effe	Draw the magnetic field pattern for a straight wire carrying a current and for a solenoid (showing the direction of the field)				
The motor effect	PHY ONLY: Interpret diagrams of electromagnetic devices in order to explain how they work				
.2 The	HT ONLY: State and use Fleming's left-hand rule and explain what the size of the induced force depends on				
6.7.2	HT ONLY: Calculate the force on a conductor carrying a current at right angles to a magnetic field by applying, but not recalling, the equation: [F = BIL]				
	HT ONLY: Explain how rotation is caused in an electric motor				