

## Grade Descriptors for (Mathematics)

## Assessment Outcomes Covered in the GCSE:

| Strand               | Number                 | Algebra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Geometry & Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ratio,<br>proportion &<br>rates of change                   | Probability | Statistics |
|----------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------|------------|
| Grade                | In order to be awarded | d this grade a student must demo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | onstrate that they can.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ••                                                          |             |            |
| To gain a<br>Grade 9 |                        | Solve quadratic equations arising from<br>algebraic fractions, Use iteration with<br>simple converging sequences. Find $f(x)$<br>+ $g(x)$ , $2f(x)$ , $f(3x)$ etc. algebraically,<br>Interpret the succession of two<br>functions as a 'composite function' e.g<br>for $f(x)$ and $g(x)$ find $gf(x)$ . Estimate<br>area under a quadratic graph by<br>dividing it into trapezium. Interpret<br>the gradient of linear or non-linear<br>graphs, and estimate the gradient of a<br>quadratic or non-linear graph at a<br>given point by sketching the tangent<br>and finding its gradient. Find the<br>equation of a tangent to a circle at a<br>given point<br>Plot graphs of the exponential<br>function $y = ab^{\times}$ for integer values of x<br>and simple positive values of a and b. | Solve problems involving<br>more complex shapes<br>and solids, including<br>segments of circles and<br>frustums of cones. Solve<br>problems for areas and<br>volumes of similar shapes<br>and solids. Find the angle<br>between a line and a<br>plane (but not the angle<br>between two planes or<br>between two planes or<br>between two skew lines).<br>Use the sine and cosine<br>rules to solve 2-D and 3-D<br>problems. Apply vector<br>methods for simple<br>geometrical proofs<br>Find the area of a<br>segment of a circle given<br>the radius and length of<br>the chord. Use the<br>trigonometric ratios to<br>solve 3-D problems | Calculate the new<br>volume of a shape<br>after enlargement |             |            |



| To gain a<br>Grade 8 | Calculate the upper and<br>lower bounds of 2-D<br>measurements e.g. area.<br>Calculate the upper and<br>lower bounds of other<br>compound<br>measurements e.g.<br>density. Write (3 - √3) <sup>2</sup> in<br>the form a + b √3.<br>Rationalise a denominator | write the functions algebraically, e.g.<br>write the equation of $f(x)$ +a or $f(x - a)$<br>Apply to the graph of $y = f(x)$ the<br>transformations, $y = -f(x)$ , $y = f(-x)$ , $y =$<br>-f(-x), $y = f(x) + a$ , $y = f(ax)$ , $y = f(x + a)$ , $y =af(x)$ for linear, quadratic, cubic, sine<br>and cosine functions $f(x)$ . Find the<br>inverse of a linear function. Plot graphs<br>of the exponential function $y = k^x$ for<br>integer values of x and simple positive<br>values of k. Recognise, sketch and<br>interpret graphs of trigonometric<br>functions (in degrees) for sin, cos and<br>tan within the range -360° to +360°.<br>Construct the graphs of simple loci<br>including the circle $x^2 + y^2 = r^2$ for a<br>circle of radius r centred at the origin<br>of the coordinate plane. Find the<br>gradient of the radius that meets the<br>circle at a given point. Find the nth<br>term of a quadratic sequence of the<br>form n <sup>2</sup> , an <sup>2</sup> , an <sup>2</sup> ± b, an <sup>2</sup> ± bn ± c. Solve<br>exactly, by elimination of an unknown,<br>linear/x <sup>2</sup> + y <sup>2</sup> = r <sup>2</sup> simultaneous<br>equations | length of arcs and area of<br>sectors of circles to solve<br>problems. Give reasons<br>for angle sizes using<br>mathematical language.<br>Give reasons for angle<br>and length calculations<br>involving the use of<br>tangent theorems.<br>Understand and use the<br>fact that tangents from<br>an external point are<br>equal in length. know and<br>apply the cosine rule a <sup>2</sup> =<br>b <sup>2</sup> + c <sup>2</sup> - 2bc cos A to find<br>unknown angles. Know<br>and apply Area = 1/2 ab sin<br>C to calculate the sides or<br>angles of any triangle.<br>Prove lines are<br>parallel/collinear | and interpret<br>graphs of<br>exponential<br>functions y = kx for<br>positive values of k<br>and integer values<br>of x. Find points<br>that divide a line in<br>a given ratio, using<br>the properties of<br>similar triangles |  | understand<br>frequency<br>density<br>Construct<br>and interpret<br>histograms<br>from class<br>intervals with<br>unequal<br>width<br>From a<br>histogram<br>complete a<br>grouped<br>frequency<br>table<br>From a<br>histogram<br>understand<br>and define<br>frequency<br>density<br>Estimate the<br>median (or<br>other<br>information)<br>from a<br>histogram<br>with unequal<br>class width |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|



|           | Use the product rule for                             | Solve simple quadratic equations by                 | Solve problems including    | Solve problems      | Use a two-way  | Know the               |
|-----------|------------------------------------------------------|-----------------------------------------------------|-----------------------------|---------------------|----------------|------------------------|
|           | counting (i.e. if there are                          | using the quadratic formula, Expand                 | examples of solids in       | involving inverse   | table to       | appropriate            |
|           | m ways of doing one task                             | two or more brackets. factorise                     | everyday use. Prove and     | proportion using    | calculate      | use of                 |
|           | and for each of these,                               | quadratic expressions of the form ax <sup>2</sup> + | use the alternate           | graphs by plotting  | conditional    | Histograms.            |
|           | there are n ways of doing                            | bx + c, including the difference of two             | segment theorem. Use        | and reading values  | probability.   | Compare the            |
|           | another task, then the                               | squares. Use function notation,                     | congruence to show that     | from graphs. Solve  | Use a tree     | mean,                  |
|           | total number of ways the                             | Deduce turning points by completing                 | translations, rotations and | problems involving  | diagram to     | median,                |
|           | two tasks can be done is                             | the square. Sketch a graph of a                     | reflections preserve        | inverse             | calculate      | mode and               |
| To gain a | m × n ways). Convert a                               | quadratic by factorising, identifying               | length and angle, so that   | proportionality,    | conditional    | range as               |
| Grade 7   | recurring decimal to a                               | roots and y-intercept , turning point.              | any figure is congruent to  | including           | probability.   | appropriate            |
|           | fraction in simple cases.                            | Find the equation of the line through               | its image under any of      | problems where y    | Use Venn       | oftwo                  |
|           | Understand a recurring                               | two given points, Find the equation of              | these transformations.      | is inversely        | diagrams to    | distributions          |
|           | decimal to fraction proof.                           | the line through two given points.                  | Calculate the length of a   | proportional to the | calculate      | Compare                |
|           | Find the value of                                    | Know that a line perpendicular to the               | diagonal of a cuboid.       | square of x.        | conditional    | distributions          |
|           | calculations using indices                           | line y = mx + c, will have a gradient of            | Enlarge 2D shapes, given    | Calculate an        | probability.   | and make               |
|           | including fractional and                             | -1/m. Write down the equation of a line             | a negative, fractional      | unknown quantity    | Understand     | inferences,            |
|           | negative indices.                                    | perpendicular to a given line. Interpret            | scale factor. Know and      | from quantities     | conditional    | using the              |
|           | Understand that the                                  | and analyse a straight line graph and               | apply the sine rule a/sin A | that vary in direct | probabilities  | shapes of              |
|           | inverse operation                                    | generate equations of lines parallel                | = b/sin B = c/sin C to find | or inverse          | and decide if  | distributions          |
|           | of raising a positive                                | and perpendicular to the given line.                | unknown lengths and         | proportion. Set up  | two events are | and                    |
|           | number to a power n is                               | Solve quadratic inequalities in one                 | angles. Calculate the area  | and use equations   | independent.   | measures of            |
|           | raising the result of this                           | variable, by factorising and sketching              | of a triangle given the     | to solve word and   | Understand     | average and            |
|           | operation to the power I/n.                          | the graph to find critical values.                  | length of two sides and     | other problems      | selection with | spread,                |
|           | Simplify surd expressions                            | Simplify and manipulate algebraic                   | the included angle. Work    | involving direct or | or without     | including              |
|           | Involving squares (e.g.                              | expressions involving surds and                     | out the magnitude of a      | Inverse proportion. | replacement.   | median and             |
|           | $\sqrt{12} = \sqrt{(4 \times 3)} = 2 \sqrt{3}$ . Use | algebraic fractions. Solve exactly, by              | vector. Calculate, and      | Calculate the new   | Use a tree     | quartiles.             |
|           | tractions, surds and pl in                           | elimination of an unknown,                          | represent graphically, the  | area of a snape     | diagram to     | From a                 |
|           | exact calculations, without                          | linear/quadratic simultaneous                       | sum of two vectors, the     | after enlargement.  | calculate      | cumulative             |
|           | a calculator                                         | equations                                           | difference of two vectors   |                     | conditional    | frequency              |
|           |                                                      |                                                     | and a scalar multiple of a  |                     | propability    | graph                  |
|           |                                                      |                                                     | vector. Solve geometrical   |                     |                | estimate               |
|           |                                                      |                                                     | problems in 2-D using       |                     |                | frequency              |
|           |                                                      |                                                     | vector methods              |                     |                | greater/less           |
|           |                                                      |                                                     |                             |                     |                | than a given           |
|           |                                                      |                                                     |                             |                     |                | Value.<br>Estimata tha |
|           |                                                      |                                                     |                             |                     |                | Estimate the           |
|           |                                                      |                                                     |                             |                     |                | histogram              |
|           |                                                      |                                                     |                             |                     |                | mstogram               |
|           |                                                      |                                                     |                             |                     |                |                        |
|           |                                                      |                                                     |                             |                     |                |                        |



|           | Use inequality notation to           | Solve linear equations in one unknown   | Prove and use the fact       | Use expressions of      | Interpret and |
|-----------|--------------------------------------|-----------------------------------------|------------------------------|-------------------------|---------------|
|           | specify simple error                 | with fractional coefficients Solve      | that the angle in a          | the form $v \alpha x^2$ | analyse       |
|           | intervals due to truncation          | guadratic equations by completing       | semicircle is a right angle. | Identify direct         | information   |
|           | or rounding. Estimate                | the square.                             | same segment are equal.      | proportion from a       | in a range of |
|           | powers and roots of any              | Expand double brackets (ax ± b)(cx ±    | opposite angles of a cyclic  | table of values by      | linear graphs |
|           | given positive number                | d). Find the coordinates of the         | quadrilateral sum to 180°.   | comparing ratios        | - to describe |
|           | Recall that n0 = 1 and n-1 =         | midpoint of a line from coordinates     | angle subtended at the       | of values               | how one       |
|           | 1/n for positive integers n          | usina a formula.                        | centre and at the            |                         | variable      |
|           | as well as $n1/2 = \sqrt{n}$ and     | Change the subject of a complex         | circumference. Use the       |                         | changes in    |
| To gain a | $n1/3 = 3 \sqrt{n}$ for any positive | formula that involves fractions, e.g.   | sine, cosine and tangent     |                         | relation to   |
| Grade 6   | number n                             | make u or v the subject of the formula  | ratios to find the lengths   |                         | another       |
|           |                                      | 1/v + 1/u = 1/t                         | of unknown sides in a        |                         | Construct     |
|           |                                      | Identify and interpret gradient from    | right-angled triangle,       |                         | cumulative    |
|           |                                      | an equation ax+by=c. Solve linear       | using more complex           |                         | frequency     |
|           |                                      | inequalities in two variables           | algebraic manipulation,      |                         | graphs        |
|           |                                      | graphically, Solve two simultaneous     | e.g. the hypotenuse          |                         | Interpret     |
|           |                                      | inequalities algebraically & show the   | (using cosine or sine), or   |                         | cumulative    |
|           |                                      | solution set on a number line. Answer   | adjacent (using the          |                         | frequency     |
|           |                                      | simple proof and 'show that' questions  | tangent ratio). Use the      |                         | graphs        |
|           |                                      | using consecutive integers (n, n+ 1),   | appropriate ratio to find a  |                         | Find the      |
|           |                                      | squares a², b², even numbers 2n, and    | length, or angle, and        |                         | median,       |
|           |                                      | odd numbers 2n + 1. Use finite/infinite | hence solve a                |                         | quartiles and |
|           |                                      | and ascending/ descending to            | two-dimensional              |                         | interquartile |
|           |                                      | describe sequences, Distinguish         | problem. Find angles of      |                         | range for     |
|           |                                      | between arithmetic and geometric        | elevation and angles of      |                         | large data    |
|           |                                      | sequences, Continue geometric           | depression. Know that        |                         | sets with     |
|           |                                      | progression and find term to term       | the tangent at any point     |                         | grouped       |
|           |                                      | rule, including negative, fraction and  | on a circle is               |                         | data          |
|           |                                      | decimal terms. Simplify expressions     | perpendicular to the         |                         | Compare the   |
|           |                                      | involving brackets and powers e.g.      | radius at that point. Know   |                         | measures of   |
|           |                                      | x(x²+x+4), 3(a + 2b) – 2(a + b)         | that the perpendicular       |                         | spread        |
|           |                                      |                                         | from the centre to the       |                         | between a     |
|           |                                      |                                         | chord bisects the chord.     |                         | pair of box   |
|           |                                      |                                         | Complete a formal            |                         | plots/cumula  |
|           |                                      |                                         | geometric proof of           |                         | tive          |
|           |                                      |                                         | similarity of two given      |                         | frequency     |
|           |                                      |                                         | triangles                    |                         | graphs        |
|           |                                      |                                         |                              |                         |               |
|           |                                      |                                         |                              |                         |               |
|           |                                      |                                         |                              |                         | L             |



| To gain a<br>Grade 5 | Multiply and divide simple<br>fractions (mixed) - positive and<br>negative. Calculate with roots<br>(surds - exact values)<br>Write numbers less than 10 in<br>standard index form. Order<br>numbers written in standard<br>index form. Convert between<br>large and small numbers into<br>standard form and vice-versa.<br>Add and subtract in standard<br>form<br>Multiply and divide numbers in<br>standard form | Solve quadratic equations algebraically by<br>factorising. In simple cases, change the subject<br>of the formula, e.g. make c the subject of the<br>formula including where the subject is on both<br>sides. Plot and draw graphs of straight lines<br>WITHOUT using a table of values (use intercept<br>and gradient). Solve more complex linear<br>inequalities in one variable & represent the<br>solution on a number line e.g6 < 2n+4 or -9 <<br>2n + 3 < 7. Generate arithmetic sequences of<br>numbers, squared integers and sequences<br>derived from diagrams<br>Solve exactly, by elimination of an unknown,<br>linear/linear simultaneous equations, including<br>where both need multiplying, Solve linear/linear<br>simultaneous equations to represent a situation,<br>Solve simultaneous equations representing a<br>real-life situation graphically and interpret the<br>solution in the context of the question | Find the surface area of simple<br>shapes (prisms) using the<br>formulae for triangles and<br>rectangles, and other shapes.<br>Use simple examples of the<br>relationship between<br>enlargement and areas and<br>volumes of simple shapes and<br>solids. Know the formula for<br>Pythagoras' theorem and use it<br>to find a shorter side and longer<br>side and solve problems. Use the<br>sine, cosine and tangent ratios<br>to find the lengths of unknown<br>sides in a right-angled triangle,<br>using straight-forward algebraic<br>manipulation, e.g. calculate the<br>adjacent (using cosine), or the<br>opposite (using sine or tangent<br>ratios). Transform 2-D shapes by<br>simple combinations of<br>rotations, reflections and<br>translation, using ICT (e.g.<br>repeated reflection, rotation or<br>translation, reflections in the x<br>and y axes, rotations about (0,<br>0)). Transform 2D shapes by a<br>more complex combination of<br>rotations, reflections and<br>translations, e.g. a reflection,<br>followed by a rotation etc. Add<br>and Subtract vectors | Write a ratio as a linear<br>function. Extend to<br>simple conversions of<br>compound measures<br>(e.g. convert 2 m/s to<br>km/hr). Convert<br>imperial units to<br>imperial units. Convert<br>between metric and<br>imperial measures. Use<br>graphs to calculate<br>measures including<br>unit price, average<br>speed, distance, time,<br>acceleration. Use<br>percentages in real-life<br>situations: compound<br>interest, depreciation,<br>percentage profit and<br>loss. Calculate repeated<br>proportional change.<br>Find the original<br>amount given the final<br>amount after a<br>percentage change (<br>reverse percentages).<br>Use calculators for<br>reverse percentage<br>calculations by doing<br>an appropriate division.<br>Understand that the<br>ratio of any two sides is<br>constant in similar<br>right-angled triangles.<br>Understand the<br>implications of<br>enlargement for<br>perimeter. Identify the<br>scale factor of an<br>enlargement as the<br>ratio of the lengths of<br>any two corresponding<br>line segments. Enlarge<br>2-D shapes and<br>recognise the similarity<br>of resulting shapes | Find a missing<br>probability from a<br>list or two-way<br>table including<br>algebraic terms<br>Use tree diagrams<br>to calculate the<br>probability of two<br>dependent events | Know the<br>appropriate use<br>of a cumulative<br>frequency<br>diagram<br>Construct<br>cumulative<br>frequency tables<br>Interpret box<br>plots to find<br>median,<br>quartiles, range<br>and interquartile<br>range and draw<br>conclusions<br>Produce box<br>plots from raw<br>data and<br>identify outliers<br>when given<br>quartiles and<br>median |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|



|           | Find HCE and I CM using Prime      | Solve equations of the form $(ax +/-b)/c = (dx +/-b)/c$             | Mark on a diagram the position      | Interpret and write        | Pecord outcomes   | l lse more        |
|-----------|------------------------------------|---------------------------------------------------------------------|-------------------------------------|----------------------------|-------------------|-------------------|
|           | Factors Use prime factorisation    | e)/f [one of c or f should be ]] Construct and                      | of point B given its bearing from   | ratios to describe a       | of events in a    | complex two       |
|           | to represent a number as a         | solve equations that involve multiplying out                        | point A Use accurate drawing to     | situation Understand       | Venn Diagram      | way tables        |
|           | product of its primes using index  | brackets by a negative number (e.g. $4(2a - 1) = 32$                | solve bearings problems. Use        | and use compound           | Use theoretical   | Find the          |
|           | notation Add and subtract          | - 3(2a - 2)) Multiply out brackets involving                        | the sum of the interior angles of   | measures (density          | models to include | median mode       |
|           | fractions (mixed) - positive and   | positive terms such as $(a + b)(c + d)$ and collect                 | an p-sided polygon Calculate        | speed pressure) Solve      |                   | and range from    |
|           | negative lise the laws of indices  | like terms. Eactorise to one bracket by taking out                  | the interior angles of polygons     | problems using             | spinners dice     | a stem and leaf   |
|           | to multiply and divide pumbers     | the highest common factors for all terms of                         | Eind the size of each interior      | constant rates and         | spinners, dice,   | diagram           |
|           | written in index notation          | $2y^2y + 6yy^2 = 2yy/(y + 3y)$                                      | angle or the size of each interior  | related formulae. Solve    | coms etc.         | Ectimate the      |
|           | Estimate answers to calculations   | ZX y ' OXy' - ZXy(X ' Sy)<br>Decompise that linear functions can be | angle of the size of each exterior  | problems involving         |                   | Estimate the      |
|           | by rounding pumbers to laig fig    | rearranged to give v explicitly in terms of v e g                   | a regular polygon. Calculate the    |                            |                   | arounod data      |
|           | by founding numbers to 1 sig. Fig. | rearranged to give y explicitly in terms of $x = 0$ .               | a regular polygon. Calculate the    | Compound measures.         |                   | grouped data      |
|           | standard index form Understand     | Fearlange y + 5x - 2 - 0 in the form y - 2 - 5x                     | volume and surface area of right    | while lengths, areas       |                   | using the         |
|           | standard index form. Understand    | simplify simple expressions involving index                         | prisms. Calculate the lengths,      | and volumes of two         |                   | mid-interval      |
|           | that each of the headings in the   | notation                                                            | areas and volumes in cylinders.     | snapes as ratios in        |                   | Value             |
|           | place value system, to the left of |                                                                     | Use the formulae for the            | simplest form. Estimate    |                   | Criticise         |
|           | the units column, can be written   |                                                                     | circumference and area of a         | conversions. Use           |                   | questions from    |
| To gain a | as a power of ten. Find the        |                                                                     | circle, given the circumference     | algebraic methods to       |                   | a questionnaire   |
| Grade 4   | reciprocal of simple               |                                                                     | or area, to calculate the radius or | solve problems             |                   | Distinguish       |
|           | numbers/fractions mentally, e.g.   |                                                                     | diameter. Find the perimeters       | involving variables in     |                   | between           |
|           | 10 and 1/10, 1/3 and 3 etc.        |                                                                     | and areas of semicircles and        | direct proportion. Use     |                   | positive,         |
|           |                                    |                                                                     | quarter circles. Use the            | expressions of the form    |                   | negative and      |
|           |                                    |                                                                     | information given about the         | yα l/x. Interpret the      |                   | zero correlation  |
|           |                                    |                                                                     | length of sides and sizes of        | gradient of a straight     |                   | using lines of    |
|           |                                    |                                                                     | angles to determine whether         | line graph as a rate of    |                   | best fit          |
|           |                                    |                                                                     | triangles are congruent, or         | change. Use compound       |                   | Interpret scatter |
|           |                                    |                                                                     | similar. Draw the locus             | interest. Represent        |                   | graphs in terms   |
|           |                                    |                                                                     | equidistant between 2 points or     | repeated proportional      |                   | ofthe             |
|           |                                    |                                                                     | from a point. Use vector            | change using a             |                   | relationship      |
|           |                                    |                                                                     | notation for translations. Use 2D   | multiplier raised to a     |                   | between two       |
|           |                                    |                                                                     | Vector notation for translation.    | power. Know that           |                   | variables         |
|           |                                    |                                                                     | Enlarge 2D shapes, given a          | enlargements of 2D         |                   | Interpret         |
|           |                                    |                                                                     | fractional scale factor. Find the   | shapes produce similar     |                   | correlation in    |
|           |                                    |                                                                     | centre of rotation. Describe a      | shapes. Express a          |                   | terms of the      |
|           |                                    |                                                                     | transformation. Describe            | multiplicative             |                   | problem           |
|           |                                    |                                                                     | reflections on a coordinate grid.   | relationship between       |                   |                   |
|           |                                    |                                                                     | Recognise whether a reflection      | two quantities as a ratio  |                   |                   |
|           |                                    |                                                                     | is correct. Express points as       | or a fraction. Use the     |                   |                   |
|           |                                    |                                                                     | position vectors. Understand        | unitary method for an      |                   |                   |
|           |                                    |                                                                     | and use vector notation             | inverse operation, e.g. If |                   |                   |
|           |                                    |                                                                     |                                     | I know an item was         |                   |                   |
|           |                                    |                                                                     |                                     | 80% of the original cost   |                   |                   |
|           |                                    |                                                                     |                                     | in a sale, find the        |                   |                   |
|           |                                    |                                                                     |                                     | original price. Use and    |                   |                   |
|           |                                    |                                                                     |                                     | interpret scale            |                   |                   |
|           |                                    |                                                                     |                                     | drawings, where scales     |                   |                   |
|           |                                    |                                                                     |                                     | use mixed units, and       |                   |                   |
| I         |                                    |                                                                     |                                     |                            |                   |                   |



L

|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on squared paper, but<br>have measurements<br>marked on them.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| To gain a<br>Grade 3 | Add and subtract up to 3<br>fractions mixing both addition<br>and subtraction into the<br>calculation, with denominators<br>less than or equal to 12 and using<br>the LCM. Be able to estimate<br>answers to calculations involving<br>2 or more operations and<br>BIDMAS<br>Work interchangeably with<br>terminating decimals and their<br>corresponding fractions (such as<br>3.5 and 7/2 or 0.375 or 3/8)<br>Use standard form display and<br>know how to enter numbers in<br>standard form. Use numbers of<br>any size rounded to 1 significant<br>figure to make standardized<br>estimates for calculations with<br>one step. Use halving and<br>doubling strategies on fractions<br>to find decimal equivalents of<br>other fractions, e.g. 1/4 = 0.25 so<br>1/8 is half of 0.25 etc. Original fact<br>is given | Solve simple two-step linear equations with<br>integer coefficients, of the form ax ± b = c, e.g. 3x<br>+ 7 = 25. Substitute positive and negative<br>integers into simple formulae, Write expressions<br>to solve problems representing a situation.<br>Understand the difference between 2n and n <sup>2</sup><br>Use the distributive law to take out numerical<br>common factors, e.g. 6a + 8b = 2(3a + 4b).<br>Recognise that equations of the form y = mx + c<br>correspond to straight-line graphs in the<br>coordinate plane. Begin to use formal algebra to<br>describe the nth term in an arithmetic<br>sequence. | Identify alternate and<br>corresponding angles on parallel<br>lines and their values. Solve<br>harder problems using<br>properties of angles, of parallel<br>and intersecting lines, and of<br>triangles and other polygons -<br>by looking at several shapes<br>together. Find the area of<br>triangles by counting i.e. adding<br>full and partial squares. Know<br>the formulae for the volume of a<br>cube and a cuboid. Use a<br>formula to calculate the area of<br>parallelograms, triangles,<br>Calculate areas of compound<br>shapes made from rectangles<br>and triangles. Know and<br>understand the term<br>'congruent'. Know that triangles<br>given SSS, SAS, ASA or RHS are<br>unique, but that triangles given<br>SSA or AAA are not. Draw a circle<br>given the radius or diameter.<br>Identify co-interior angles and<br>their values. Use the sum of the<br>exterior angles of any polygon is<br>360°. Calculate the interior<br>angles of regular polygons. Use<br>a formula to calculate the area<br>of trapezium. Deduce and use<br>formulas for the area of a<br>trapezium. Use the formula for<br>the circumference of a circle.<br>Use the formulae for area of a<br>circle, given the radius or<br>diameter | Use the unitary method<br>to solve simple word<br>problems involving<br>ratio and direct<br>proportion. Divide a<br>quantity into more than<br>two parts in a given<br>ratio. Convert one<br>metric unit to another,<br>including decimals (e.g.<br>3250 grams to 3.25<br>kilograms, or 3.25kg to<br>3250g). Use fraction<br>notation to express a<br>smaller whole number<br>as a fraction of a larger<br>one. Use a ratio to find<br>one quantity when the<br>other is known. Use<br>proportional reasoning<br>to solve a problem. Use<br>strategies for finding<br>equivalent fractions,<br>decimals and<br>percentages involving<br>decimal percentages<br>and decimals greater<br>than 0. Find the<br>outcome of a given<br>percentage<br>increase/decrease. Use<br>and interpret maps,<br>using proper map<br>scales (1 : 25 000).<br>Simplify a ratio<br>expressed in fractions<br>or decimals. Write<br>ratios in the form 1: m<br>or m: 1. Set up<br>equations to show<br>direct proportion. Use<br>expressions of the form | Know that if the<br>probability of an<br>event is p, the<br>probability of it<br>not occurring is<br>1-p<br>Identify different<br>mutually exclusive<br>outcomes and<br>know that the<br>sum of<br>probabilities of all<br>outcomes is 1<br>Estimate the<br>number of times<br>an event will<br>occur, given the<br>probability and<br>the number of<br>trials<br>Identify all<br>mutually exclusive<br>outcomes for two<br>successive events<br>with three<br>outcomes in each<br>event<br>Work out<br>probabilities from<br>frequency tables | Use simple two<br>way tables<br>Design a<br>question for a<br>questionnaire,<br>Calculate the<br>mean and range<br>from a<br>frequency table<br>for discrete data<br>Produce<br>ordered<br>back-to-back<br>stem and leaf<br>diagrams<br>Draw scatter<br>graphs, Interpret<br>a scatter graph<br>Construct and<br>use frequency<br>polygons to<br>compare sets of<br>data |



|           |                                          |                                                                    |                                   | y a x. Identify direct    |                    |                  |
|-----------|------------------------------------------|--------------------------------------------------------------------|-----------------------------------|---------------------------|--------------------|------------------|
|           |                                          |                                                                    |                                   | proportion from a         |                    |                  |
|           |                                          | Culestitute escitive interveninte simple formavilar                |                                   | graph                     |                    | Demascent data   |
|           | whole number. Understand the             | expressed in words. Use function machines to                       | obtuse angles to the pearest      | describe parts of         | use experimental   | in a table       |
|           | vocabulary of prime numbers              | create expressions                                                 | degree Use a protractor to draw   | shapes Recognise the      | and theoretical    | Find mode        |
|           | factors, multiples, common               | Simplify simple linear algebraic expressions by                    | acute angles to the nearest       | equivalence of            | measures of        | modal, median.   |
|           | factors, common multiples.               | collecting like terms (e.g. a + a + a, 3b + 2b). Use               | dearee. Distinguish between       | percentages, fractions    | probability.       | mean from        |
|           | Multiply and divide decimals by          | distributive law with brackets, with numbers                       | acute, obtuse and reflex angles.  | and decimals. Define      | including relative | discrete and     |
|           | 10, 100, 1000, and explain the           | Generate terms of a simple sequence using                          | Use the formula for the area of a | percentages as the        | frequency to       | grouped          |
|           | effect multiply by 0.                    | term to term rules like +3, -2. Find the next term                 | rectangle/square. Calculate the   | number of parts per       | include outcomes   | discrete data.   |
|           | Recognise that every number              | in a sequence, including negative values                           | surface area of cubes with a net. | hundred. Draw lines       | using dice,        | Produce bar      |
|           | can be written as a product of           | Construct expressions from worded                                  | Calculate perimeter and area of   | and shapes to scale.      | spinners, coins    | charts including |
|           | two factors.                             | descriptions, using addition, subtraction and                      | compound shapes made from         | Use and interpret maps    | etc.               | dual bar charts, |
|           | Be able to order negative                | multiplication e.g. 3a, a + b, 2 + a + b + 3 = 5 + a +             | triangles, rectangles and other   | and scale drawings,       | Use the            | pie charts       |
|           | left Desimals should be to 2 or 7        | D, a × D, a × a<br>Regin to multiply a single positive term over a | triangle. Understand and use      | using a variety of scales | vocabulary of      | produce          |
| To gain a | significant figures                      | bracket containing linear terms e.g. 4(y+3)                        | the language associated with      | length using a scale      | Understand and     | Interpret simple |
| Grade 2   | Use index notation for squares &         | Multiply together two simple algebraic                             | bearings. Identify interior and   | diagram. Divide a         | use the            | pie charts       |
| 0.000 -   | cubes & for positive integer             | expressions, e.g. 2a × 3b                                          | exterior angles in a shape.       | quantity into two parts   | probability scale  | Compare two      |
|           | powers of 10 (e.g. write $27$ as $3^3$ & |                                                                    | Calculate angles around a point.  | in a given ratio, where   | from 0 to 1        | simple           |
|           | 1000 as 10 <sup>3</sup> )                |                                                                    | Use the sum of angles in a        | ratio given in ratio      |                    | distributions    |
|           |                                          |                                                                    | triangle to find missing angle    | notation. Convert a       |                    | using the range  |
|           |                                          |                                                                    | values. Use the sum of the        | larger whole number       |                    | Use information  |
|           |                                          |                                                                    | interior angle and the exterior   | metric unit to a smaller  |                    | provided to      |
|           |                                          |                                                                    | angle is 180°. Calculate the      | unit (e.g. 3 kilograms to |                    | complete a       |
|           |                                          |                                                                    | surface area of cubes, without a  | botwoon simple matric     |                    | two-way          |
|           |                                          |                                                                    | area of shapes made from          | units Express one         |                    |                  |
|           |                                          |                                                                    | rectangles. Use the basic         | number as a fraction of   |                    |                  |
|           |                                          |                                                                    | congruence criteria for triangles | another. Express the      |                    |                  |
|           |                                          |                                                                    | (SSS, SAS, ASA, RHS). Identify    | division of a quantity    |                    |                  |
|           |                                          |                                                                    | regular and irregular polygons.   | into a number of parts    |                    |                  |
|           |                                          |                                                                    | Draw or complete diagrams         | as a ratio. Use           |                    |                  |
|           |                                          |                                                                    | with a given number of lines of   | percentages to            |                    |                  |
|           |                                          |                                                                    | symmetry, order of rotational     | compare simple            |                    |                  |
|           |                                          |                                                                    | symmetry. Name all                | proportions. Recall       |                    |                  |
|           |                                          |                                                                    | quadrilaterais that have a        | equivalent i ractions,    |                    |                  |
|           |                                          |                                                                    | specific property                 | nercentages including     |                    |                  |
|           |                                          |                                                                    |                                   | for fractions that are    |                    |                  |
|           |                                          |                                                                    |                                   | greater than 1. Match     |                    |                  |
|           |                                          |                                                                    |                                   | across all 3 types, and   |                    |                  |
|           |                                          |                                                                    |                                   | need to be simple         |                    |                  |
|           |                                          |                                                                    |                                   | fractions (1/2, 1/4, 1/5, |                    |                  |
|           |                                          |                                                                    |                                   | 1/10). Find a percentage  |                    |                  |
|           |                                          |                                                                    |                                   | of a quantity using a     |                    |                  |



|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | multiplier. Interpret<br>percentages and<br>percentage change as<br>a fraction or a decimal.<br>Use ratio notation.<br>Reduce a ratio to its<br>simplest form |                                                                                             |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| To gain a<br>Grade 1 | Round positive whole numbers<br>to the nearest 10, 100 or 1000.<br>Add three or more multiples of<br>10, Find a difference by counting<br>up through the next multiple of<br>10. Partition to multiply mentally<br>TU × U, Use doubling, Use<br>halving.<br>Know by heart multiplication<br>facts up to 10 × 10, Know square<br>numbers, 1 × 1 to 10 × 10<br>Understand addition and<br>subtraction as they apply to<br>whole numbers and decimals<br>Use diagrams to compare two or<br>more simple fractions, order<br>positive and negative integers | Find outputs of simple functions in words and<br>symbols<br>Read x and y coordinate in the first quadrant | Know the sum of angles on a<br>straight line. Find the perimeter<br>of a square/rectangle by<br>counting. Identify and name<br>common solids: cube, cuboid,<br>cylinder, prism, pyramid, sphere<br>and cone. Draw sketches of<br>shapes. Recognise properties of<br>squares. Identify all the<br>symmetries of 2-D shapes.<br>Construct diagrams of everyday<br>2-D situations involving<br>rectangles, triangles,<br>perpendicular and parallel lines.<br>Know the sum of angles in a<br>triangle is 180°. Recognise where<br>a shape will be after translation | Convert a percentage<br>to a number of<br>hundredths or tenths.<br>Read and construct<br>scale drawings                                                       | Find range from<br>a set of ordered<br>data<br>Find the range<br>of a small set of<br>data. |