

Section 1: Points and straight lines

Exercise level 1

- 1. (a) For the points A(3, 1) and B(7, 4) calculate
 - (i) the gradient of AB
 - (ii) the gradient of a line perpendicular to AB
 - (iii) the midpoint of AB
 - (iv) the distance AB
 - (b) Repeat part (a) for the points A(-2, 9) and B(3, -1)
- 2. Sketch the following lines.

(i)
$$y = x + 3$$

(ii)
$$y = 2x - 1$$

(iii)
$$x + y = 5$$

(iv)
$$4y = x + 12$$

(v)
$$3y + x + 6 = 0$$

(vi)
$$5y = 15 - 2x$$

3. Find the equations of the lines (a)-(e) in the diagram below.

- 4. A quadrilateral has vertices A(3, 5), B(9, 7), C(10, 4) and D(4, 2). Show that ABCD is a rectangle.
- 5. The following questions are about the coordinate geometry of the following points: A (2, 2), B (3, 1), C (4, 4), D (5, 5), E (6, -1), F (7, -3)
 - (i) Find the lengths of the line segments AE and AB.
 - (ii) Find the gradients of each of AB, AC, AE, DE, and CD.
 - (iii) State which of the lines in part (ii) are parallel or perpendicular to each other.
 - (iv) What is the angle between AC and BF?

Section 1: Points and straight lines

Exercise level 2

- 1. Given the points A(3, 1), B(6, y) and C(12, -2) find the value(s) of y for which
 - (i) the line AB has gradient 2
 - (ii) the distance AB is 5
 - (iii) A, B and C are collinear
 - (iv) AB is perpendicular to BC
 - (v) the lengths AB and BC are equal
- 2. Find the equations of the following lines.
 - (i) parallel to y = 4x 1 and passing through (2, 3)
 - (ii) perpendicular to y = 2x + 7 and passing through (1, 2)
 - (iii) parallel to 3y + x = 10 and passing through (4, -1)
 - (iv) perpendicular to 3x + 4y = 12 and passing through (-3, 0)
 - (v) parallel to x+5y+8=0 and passing through (-1, -6)
- 3. Find the equation of the line AB in each of the following cases.
 - (i) A(1, 6), B(3, 2)
 - (ii) A(8, -1), B(-2, 3)
 - (iii) A(-5, 2), B(7, -4)
 - (iv) A(-3, -5), B(5, 1)

4. The point E is (2, -1), F is (1, 3), G is (3, 5) and H is (4, 1). Show, by calculation that EFGH is a parallelogram. Is EFGH also a rhombus? Explain your answer.

- 5. P is the point (2, 1), Q is (6, 9) and R is (10, 2).
 - (i) Sketch the triangle PQR.
 - (ii) Prove that triangle PQR is isosceles.
 - (iii) Work out the area of triangle PQR.
- 6. Three points are A (-1, 5), B (1, 0), and C (11, 4).
 - (i) Find the gradient of BA.
 - (ii) Find the gradient of BC, and show that BA is perpendicular to BC.
 - (iii) Find the equation of the line through C, parallel to BA.
 - (iv) Find the equation of the line through A, parallel to BC.
 - (v) Find the coordinates of point D, the remaining vertex of the rectangle ABCD.

Section 1: Points and straight lines

Exercise level 3 (Extension)

- 1. A triangle has vertices E(2, 5), F(4, 1) and G(-2, -3).
 - (i) Find the midpoint of each side and hence find the equations of the three medians.
 - (Medians are the lines from the midpoint of each side to the opposite vertex).
 - (ii) Show that the point $(\frac{4}{3},1)$ lies on each median.
- 2. The sides of a triangle are formed by parts of the lines y+3x=11, 3y=x+3 and 7y+x=37.
 - (i) Find the coordinates of the vertices of the triangle.
 - (ii) Show that the triangle is right-angled.
 - (iii) Work out the area of the triangle.
- 3. ABCD is a parallelogram. The equation of AB is y = 4x 3 and the equation of BC is y = 2x + 1.
 - (i) Find the coordinates of B.
 - (ii) The coordinates of A are (3, 9). Find the equation of AD.
 - (iii) The coordinates of C are (7, 15). Find the equation of CD.
 - (iv) Find the coordinates of D.
- 4. The perpendicular bisector of AB, where A is (4, 2) and B is (10, 12), crosses the axes at points P and Q. Find the area of triangle OPQ.
- 5. Point A is (3, 1) and B is (8, 4). A line passes through B perpendicular to AB, and meets the axes at points P and Q. A second line through A perpendicular to AB meets the axes at R and S. Find the area of PQRS. What shape is it?
- 6. Point A is (5, 2), B is (1, 5), and C is (6, 6). Point D lies on AB, with CD perpendicular to AB. Find the coordinates of D.
- 7. Point A is (4, 5), B is (2, 1), C is (7, 1), and D is (-1, 5).
 - (i) Find the midpoint of AB and CD.
 - (ii) Find the gradients of AB and CD.
 - (iii) What shape is the figure ACBD?
 - (iv) Find the area of figure ACBD.

Section 2: Circles

Exercise level 1

- 1. Find, in the form $x^2 + y^2 + px + qy = c$, the equation for each of the following circles.
 - (i) centre (0, 0), radius 6
 - (ii) centre (3, 1), radius 5
 - (iii) centre (-2, 5), radius 1
 - (iv) centre (0, -4), radius 3
- 2. For each of these circles, write down the coordinates of the centre and the radius.

(i)
$$x^2 + y^2 = 100$$

(ii)
$$(x-2)^2 + (y-7)^2 = 16$$

(iii)
$$(x+3)^2 + (y-4)^2 = 4$$

(iv)
$$(x+4)^2 + (y+5)^2 = 20$$

3. For each of these circles, find the coordinates of the centre and the radius.

(i)
$$x^2 + y^2 + 4x - 5 = 0$$

(ii)
$$x^2 + y^2 - 6x + 10y + 20 = 0$$

(iii)
$$x^2 + y^2 - 2x - 3y + 3 = 0$$

4. The point C is (4, -2) and the point A is (6, 3). Find the equation of the circle centre C and radius CA.

- 5. The points A (2, 0) and B (6, 4) form the diameter of a circle. Find the equation of the circle.
- 6. From the following equations, which represent the Cartesian equation of a circle? For each circle, find the coordinates of the centre, and find the radius.

(i)
$$x^2 + y^2 - 4x + 6y = 51$$

(ii)
$$x^2 + 2y^2 - 3x = 11$$

(iii)
$$4x^2 + 4y^2 = 65$$

(iv)
$$8x^2 + 8y^2 - 48x - 16y = -104$$

Section 2: Circles

Exercise level 2

- 1. (i) Show that the line y = 4 x is a tangent to the circle $x^2 + y^2 = 8$.
 - (ii) Show that the line 4y = 3x 25 is a tangent to the circle $x^2 + y^2 = 25$.

- 2. A circle passes through the points Q(0, 3) and R(0, 9) and touches the *x*-axis. Work out two possible equations for the circle.
- 3. The line 2y + x = 10 meets the circle $x^2 + y^2 = 65$ at P and Q. Calculate the length of PQ.

4. The line y = x+1 does not intersect the circle $(x-1)^2 + (y+2)^2 = k$. Find the possible values for k.

- 5. The points P (-2, 6), Q (6, 0) and R (5, 7) all lie on a circle.
 - (i) Show that PR is perpendicular to QR.
 - (ii) Explain why the result from (i) shows that PQ is a diameter of the circle.
 - (iii) Hence calculate the equation of the circle.
- 6. (i) Write down the equation of the circle centre (0, 0) and radius $\sqrt{17}$.
 - (ii) Show that the point P(-4, -1) lies on the circle.
 - (iii) Find the equation of the tangent at P.
 - (iv) The line x + y = 3 meets the circle at two points, Q and R. Find the coordinates of Q and R.
 - (v) Find the coordinates of the point, S, where the tangent at P intersects the line x + y = 3.

Section 2: Circles

Exercise level 3 (Extension)

- 1. Find k so that point P $(3, \sqrt{27})$ lies on the circle $x^2 + y^2 = k^2$. If P, Q, and R lie on the circle, and triangle PQR is equilateral, write down the coordinates of the two vertices Q and R.
- 2. (i) P is point (2, 1) and Q is (10, 5). Find the midpoint M of PQ, and hence write down the equation of the circle with PQ as diameter.
 - (ii) Line L_1 has equation y = 3x 15. Find the points U, V where line L_1 intersects the circle. What is the angle PUQ?
 - (iii)Line L₂ has equation y + 2x = 5. Point R lies on line L₂. Find angle RPQ.
- 3. A set of circles all pass through the points P (1, -3) and Q (5, 7). Show that all their centres lie on a straight line, and find its equation.
- 4. A gardener is planning an exhibition garden based on a design made up of circles and straight lines. She decides to create a plan, using coordinate geometry, where each unit on her graph represents a distance of 1 metre.
 - (i) Write down the equation of a circle centre C(5, 0), with radius 5.
 - (ii) On her plan, she draws two straight paths from point P (20, 0) to points Q and R on the circle. Point Q has coordinates (a, b). If she draws PQ so that CQ and PQ are at right angles, what is the length of the path PQ?
 - (iii) Find the gradients of the lines CQ and QP in terms of a and b, and hence find the position of Q, and then R.
 - (iv) Write down the shape of PQCR, and find its area.

Section 1: Points and straight lines

Solutions to Exercise level 1

1. (a) (i) Gradient of AB =
$$\frac{y_1 - y_2}{x_1 - x_2} = \frac{1 - 4}{3 - 7} = \frac{-3}{-4} = \frac{3}{4}$$
.

- (ii) Gradient m of perpendicular line satisfies $m \times \frac{3}{4} = -1$ so gradient of perpendicular line $= -\frac{4}{3}$.
- (iii) Midpoint of AB = $\left(\frac{3+7}{2}, \frac{1+4}{2}\right) = (5, 2.5)$

(iv) Distance AB =
$$\sqrt{(3-7)^2 + (1-4)^2}$$

= $\sqrt{16+9}$
= $\sqrt{25}$
= 5

(b) (i) Gradient of AB =
$$\frac{y_1 - y_2}{x_1 - x_2} = \frac{9 - (-1)}{-2 - 3} = \frac{10}{-5} = -2$$
.

(ii) Gradient m of perpendicular line satisfies $m \times -2 = -1$ so gradient of perpendicular line $=\frac{1}{2}$.

(iii) Midpoint of AB =
$$\left(\frac{-2+3}{2}, \frac{9+(-1)}{2}\right) = (0.5, 4)$$

(iv) Distance AB =
$$\sqrt{(-2-3)^2 + (9-(-1))^2}$$

= $\sqrt{25+100}$
= $\sqrt{125}$
= $5\sqrt{5}$

2. (i)
$$y=x+3$$

Gradient = 1
When $x=0$, $y=3$
When $y=0$, $x+3=0 \Rightarrow x=-3$

(iii)
$$x+y=5$$

 $y=-x+5$
Gradient = -1
When $x=0, y=5$
When $y=0, x=5$

(iv)
$$4y = x + 12$$

 $y = \frac{1}{4}x + 3$
Gradient = $\frac{1}{4}$
When $x = 0$, $y = 3$
When $y = 0$, $x + 12 = 0 \Rightarrow x = -12$

(v)
$$3y + x + 6 = 0$$

 $3y = -x - 6$
 $y = -\frac{1}{3}x - 2$
Gradient $= -\frac{1}{3}$
When $x = 0$, $y = -2$
When $y = 0$, $x + 6 = 0 \Rightarrow x = -6$

- 3. (a) Gradient = 1, y-in tercept = 2 Equation of line is y = x + 2
 - (b) Gradient = $\frac{1}{2}$, y-intercept = -1 Equation of line is $y = \frac{1}{2}x - 1$ or 2y = x - 2

- (c) Gradient = $-\frac{1}{2}$, y-intercept = -2 Equation of line is $y = -\frac{1}{2}x - 2$ or 2y + x + 4 = 0
- (d) Gradient = $-\frac{1}{4}$, y-intercept = 3 Equation of line is $y = -\frac{1}{4}x + 3$ or 4y + x = 12
- (e) Gradient = $-\frac{g}{3}$, passes through (-1, 4) Equation of line is $y-4=-\frac{g}{3}(x-(-1))$ 3(y-4)=-8(x+1) 3y-12=-8x-83y+8x=4

4. Gradient of AB =
$$\frac{7-5}{9-3} = \frac{2}{6} = \frac{1}{3}$$

Gradient of BC = $\frac{4-7}{10-9} = \frac{-3}{1} = -3$
Gradient of CD = $\frac{2-4}{4-10} = \frac{-2}{-6} = \frac{1}{3}$
Gradient of AD = $\frac{2-5}{4-3} = \frac{-3}{1} = -3$

AB and CD are parallel, and BC and AD are parallel. The gradients of AB and CD are $\frac{1}{3}$, and the gradients of BC and AD are -3. Since $\frac{1}{3} \times -3 = -1$, AB and CD are perpendicular to BC and AD so ABCD is a rectangle.

5. (i)
$$|AE| = \sqrt{4^2 + 3^2} = 5$$

 $|AB| = \sqrt{1^2 + (-1)^2} = \sqrt{2}$

- (ii) gradient $AB = \frac{-1}{1} = -1$ gradient $AC = \frac{2}{2} = 1$ gradient $AE = \frac{-3}{4} = -\frac{3}{4}$ gradient $DE = \frac{-6}{1} = -6$ gradient $CD = \frac{1}{1} = 1$
- (ííí) AC and CD are parallel to each other AB is perpendicular to AC and to CD
- (iv) gradient BF = $\frac{-4}{4}$ = -1 so the angle between AC and BF is 90°.

Section 1: Points and straight lines

Solutions to Exercise level 2

1. (i) Gradient of AB =
$$\frac{y_1 - y_2}{x_1 - x_2} = \frac{1 - y}{3 - 6} = \frac{1 - y}{-3}$$

Gradient of AB = $2 \Rightarrow \frac{1 - y}{-3} = 2$

$$\Rightarrow 1 - y = -6$$

$$y = 7$$

(ii) Distance AB is 5

$$\sqrt{(3-6)^2 + (1-y)^2} = 5$$

$$9 + (1-y)^2 = 25$$

$$(1-y)^2 = 16$$

$$1-y = \pm 4$$

$$y = 1-4 \text{ or } 1+4$$

$$y = -3 \text{ or } 5$$

(iii) If A, B and C are collinear, gradient of AB = gradient of AC.
Gradient of AC =
$$\frac{y_1 - y_2}{x_1 - x_2} = \frac{1 - (-2)}{3 - 12} = \frac{3}{-9} = -\frac{1}{3}$$

From (i), gradient of AB = $\frac{1 - y}{-3}$
 $\frac{1 - y}{-3} = -\frac{1}{3}$
 $1 - y = 1$
 $y = 0$

(iv) If AB is perpendicular to BC, then grad AB
$$\times$$
 grad BC = -1
From (i), gradient of AB = $\frac{1-y}{-3}$
Gradient of BC = $\frac{y_1-y_2}{x_1-x_2} = \frac{y-(-2)}{6-12} = \frac{y+2}{-6}$

$$\frac{1-y}{-3} \times \frac{y+2}{-6} = -1$$

$$(1-y)(y+2) = -18$$

$$2-y-y^2 = -18$$

$$y^2 + y - 20 = 0$$

$$(y+5)(y-4) = 0$$

$$y = -5 \text{ or } y = 4$$

(v) Length AB = length BC

$$\sqrt{(3-6)^2 + (1-y)^2} = \sqrt{(6-12)^2 + (y-(-2))^2}$$

$$9 + (1-y)^2 = 36 + (y+2)^2$$

$$1 - 2y + y^2 = 27 + y^2 + 4y + 4$$

$$0 = 6y + 30$$

$$y = -5$$

- 2. (i) Gradient of y=4x-1 is 4

 Gradient of parallel line = 4

 Equation of line is y-3=4(x-2) y-3=4x-8 y=4x-5
 - (ii) Gradient of y=2x+7 is 2 Gradient of perpendicular line is $-\frac{1}{2}$ Equation of line is $y-2=-\frac{1}{2}(x-1)$ 2(y-2)=-(x-1) 2y-4=-x+12y+x=5

(iii)
$$3y + x = 10 \Rightarrow y = -\frac{1}{3}x + \frac{10}{3}$$

Gradient is $-\frac{1}{3}$
Gradient of parallel line is $-\frac{1}{3}$
Equation of line is $y - (-1) = -\frac{1}{3}(x - 4)$
 $3(y + 1) = -(x - 4)$
 $3y + 3 = -x + 4$
 $3y + x = 1$

(iv) $3x+4y=12 \Rightarrow y=-\frac{3}{4}x+3$ Gradient is $-\frac{3}{4}$ Gradient of perpendicular line is $\frac{4}{3}$

Equation of line is
$$y-0=\frac{4}{3}(x-(-3))$$

 $3y=4(x+3)$
 $3y=4x+12$

(v)
$$x+5y+8=0 \Rightarrow y=-\frac{1}{5}x-\frac{8}{5}$$

Gradient is $-\frac{1}{5}$
Gradient of parallel line is $-\frac{1}{5}$
Equation of line is $y-(-6)=-\frac{1}{5}(x-(-1))$
 $5(y+6)=-(x+1)$
 $5y+30=-x-1$
 $5y+x+31=0$

3. (i) Gradient of AB =
$$\frac{y_1 - y_2}{x_1 - x_2} = \frac{6 - 2}{1 - 3} = \frac{4}{-2} = -2$$

Equation of AB is $y - 6 = -2(x - 1)$
 $y - 6 = -2x + 2$
 $y + 2x = 8$

(ii) Gradient of AB =
$$\frac{y_1 - y_2}{x_1 - x_2} = \frac{-1 - 3}{8 - (-2)} = \frac{-4}{10} = -\frac{2}{5}$$

Equation of AB is $y - (-1) = -\frac{2}{5}(x - 8)$
 $5(y + 1) = -2(x - 8)$
 $5y + 5 = -2x + 16$
 $5y + 2x = 11$

(iii) Gradient of AB =
$$\frac{y_1 - y_2}{x_1 - x_2} = \frac{2 - (-4)}{-5 - 7} = \frac{6}{-12} = -\frac{1}{2}$$

Equation of AB is $y - 2 = -\frac{1}{2}(x - (-5))$
 $2(y - 2) = -(x + 5)$
 $2y - 4 = -x - 5$
 $2y + x + 1 = 0$

(iv) Gradient of AB =
$$\frac{y_1 - y_2}{x_1 - x_2} = \frac{-5 - 1}{-3 - 5} = \frac{-6}{-8} = \frac{3}{4}$$

Equation of AB is $y - (-5) = \frac{3}{4}(x - (-3))$
 $4(y + 5) = 3(x + 3)$
 $4y + 20 = 3x + 9$
 $4y = 3x - 11$

4. Gradient of EF =
$$\frac{3-(-1)}{1-2} = \frac{4}{-1} = -4$$

Gradient of FG =
$$\frac{5-3}{3-1} = \frac{2}{2} = 1$$

Gradient of GH =
$$\frac{1-5}{4-3} = \frac{-4}{1} = -4$$

Gradient of EH =
$$\frac{1 - (-1)}{4 - 2} = \frac{2}{2} = 1$$

EF is parallel to GH and FG is parallel to EH so EFGH is a parallelogram.

If EFGH were a rhombus, all the sides would be equal.

$$EF^2 = (2-1)^2 + (-1-3)^2 = 1^2 + (-4)^2 = 17$$

$$FG^2 = (1-3)^2 + (3-5)^2 = (-2)^2 + (-2)^2 = 8$$

The lengths of EF and FG are not equal, so EFGH is not a rhombus.

5. (í)

(ii)
$$PQ = \sqrt{(6-2)^2 + (9-1)^2} = \sqrt{16+64} = \sqrt{80}$$

$$PR = \sqrt{(10-2)^2 + (2-1)^2} = \sqrt{64+1} = \sqrt{65}$$

$$QR = \sqrt{(10-6)^2 + (2-9)^2} = \sqrt{16+49} = \sqrt{65}$$

Since PR and QR are the same length, the triangle is isosceles.

(iii) Take the base of the triangle as PQ

$$M = \left(\frac{2+6}{2}, \frac{1+9}{2}\right) = (4,5)$$

Height of triangle is MR =
$$\sqrt{(10-4)^2 + (2-5)^2} = \sqrt{36+9} = \sqrt{45}$$

Area of triangle =
$$\frac{1}{2} \times PQ \times MR$$

= $\frac{1}{2} \sqrt{80} \sqrt{45}$
= $\frac{1}{2} \sqrt{16 \times 5} \sqrt{9 \times 5}$
= $\frac{1}{2} \times 4\sqrt{5} \times 3\sqrt{5}$
= 6×5
= 30

6. (i) gradient BA =
$$\frac{5-0}{(-1)-1} = -\frac{5}{2}$$

(ii) gradient BC =
$$\frac{4-0}{11-1} = \frac{2}{5}$$

gradient BA × gradient BC = $-\frac{5}{2} \times \frac{2}{5} = -1$, so BA and BC are perpendicular to each other.

(iii)
$$y-4 = -\frac{5}{2}(x-11)$$
$$\Rightarrow 2y+5x=63$$

(iv)
$$y-5 = \frac{2}{5}(x+1)$$
$$\Rightarrow 5y-2x = 27$$

(v)
$$2y+5x=63$$
 (1)
 $5y-2x=27$ (2)
mult (1) $x5$ $10y+25x=315$
mult (2) $x2$ $10y-4x=54$
subtracting $29x=261$
 $\Rightarrow x=9, y=9$
so D is the point $(9,9)$

Section 1: Points and straight lines

Solutions to Exercise level 3 (Extension)

1. (i) Midpoint of EF =
$$\left(\frac{2+4}{2}, \frac{5+1}{2}\right) = (3,3)$$

Midpoint of FG = $\left(\frac{4+(-2)}{2}, \frac{1+(-3)}{2}\right) = (1,-1)$
Midpoint of EG = $\left(\frac{2+(-2)}{2}, \frac{5+(-3)}{2}\right) = (0,1)$

Median from midpoint of EF (3, 3) to G (-2, -3)
Gradient of median =
$$\frac{-3-3}{-2-3} = \frac{-6}{-5} = \frac{6}{5}$$

Equation of median is $y-3 = \frac{6}{5}(x-3)$
 $5(y-3) = 6(x-3)$
 $5y-15 = 6x-18$
 $5y=6x-3$

Median from midpoint of FG (1, -1) to E (2, 5)
Gradient of median
$$=$$
 $\frac{5-(-1)}{2-1}=\frac{6}{1}=6$
Equation of median is $y-(-1)=6(x-1)$
 $y+1=6x-6$
 $y=6x-7$

Median from midpoint of Eq. (0, 1) to F (4, 1) Gradient of median $=\frac{1-1}{4-0}=\frac{0}{4}=0$ Equation of median is y=1

(ii) Equation of first median is
$$5y = 6x - 3$$

Substituting $x = \frac{4}{3}$ gives $5y = 6 \times \frac{4}{3} - 3 = 8 - 3 = 5$
 $y = 1$
so $(\frac{4}{3}, 1)$ lies on the median.

Equation of second median is
$$y = 6x - 7$$

Substituting $x = \frac{4}{3}$ gives $y = 6 \times \frac{4}{3} - 7 = 8 - 7 = 1$
so $\left(\frac{4}{3},1\right)$ lies on the median.

Equation of third median is y = 1, so $(\frac{4}{3}, 1)$ lies on the median.

2. (i) Let the triangle be ABC.

Let A be the intersection point of
$$y+3x=11$$
 and $3y=x+3$.
 $y+3x=11 \Rightarrow y=11-3x$
Substituting into $3y=x+3$ gives $3(11-3x)=x+3$

$$33 - 9x = x + 3$$

$$x = 3$$

When x = 3, $y = 11 - 3 \times 3 = 2$

The coordinates of A are (3, 2).

Let B be the intersection point of 3y = x + 3 and 7y + x = 37 $3y = x + 3 \implies x = 3y - 3$

Substituting into
$$fy+x=3f$$
 gives $fy+3y-3=3f$

$$10y = 40$$

When y = 4, $x = 3 \times 4 - 3 = 9$

The coordinates of B are (9, 4).

Let C be the intersection point of y+x=3y and y+3x=11

$$y+3x=11 \Rightarrow y=11-3x$$

Substituting into fy+x=3f gives f(11-3x)+x=3f

$$77 - 21x + x = 37$$

$$40 = 20x$$

When x = 2, $y = 11 - 3 \times 2 = 5$

The coordinates of C are (2, 5).

The vertices of the triangle are (3, 2), (9, 4) and (2, 5).

(ii) AB is the line $y+3x=11 \Rightarrow y=11-3x$

so the gradient of AB is -3.

BC is the line
$$3y = x + 3 \implies y = \frac{1}{3}x + 1$$

so the gradient of BC is $\frac{1}{3}$.

Gradient of AB × gradient of AC = $-3 \times \frac{1}{3} = -1$

so AB and AC are perpendicular, and therefore the triangle is rightangled.

2 of 5

$$AB = \sqrt{(3-9)^2 + (2-4)^2} = \sqrt{36+4} = \sqrt{40}$$

$$AC = \sqrt{(3-2)^2 + (2-5)^2} = \sqrt{1+9} = \sqrt{10}$$
Area of triangle = $\frac{1}{2} \times AB \times AC$
= $\frac{1}{2} \sqrt{40} \sqrt{10}$
= $\frac{1}{2} \sqrt{4} \sqrt{10} \sqrt{10}$
= $\frac{1}{2} \times 2 \times 10$
= 10

3. (i) B is the intersection point of
$$y = 4x - 3$$
 and $y = 2x + 1$.

$$4x-3=2x+1$$
 $2x=4$
 $x=2$
When $x=2$, $y=4\times2-3=5$
The coordinates of B are $(2,5)$.

Equation of CD is
$$y-15=4(x-7)$$

 $y-15=4x-28$
 $y=4x-13$

$$2x+3=4x-13$$

 $16=2x$
 $x=8$
When $x=8$, $y=2\times8+3=19$
The coordinates of D are $(8,19)$.

4. Midpoint of AB =
$$\left(\frac{4+10}{2}, \frac{2+12}{2}\right) = (\mathcal{F}, \mathcal{F})$$

Gradient of AB = $\frac{10}{6} = \frac{5}{3}$

Gradient of perpendicular to AB =
$$-\frac{3}{5}$$

Equation of perpendicular bisector is

$$y-7 = -\frac{3}{5}(x-7)$$

 $\Rightarrow 5y+3x=56$
so $P = (\frac{56}{3},0)$ and $Q(0,\frac{56}{5})$
Area of $OPQ = \frac{1}{2}(\frac{56}{3})(\frac{56}{5})$
 $= 104.53$

5. gradient AB =
$$\frac{3}{5}$$

Equation of first line is
$$y-4=-\frac{5}{3}(x-8)$$

 $\Rightarrow 3y=-5x+52$

so P =
$$(\frac{52}{5}, 0)$$
 and Q = $(0, \frac{52}{3})$

Equation of second line is
$$y-1=-\frac{5}{3}(x-3)$$

$$\Rightarrow$$
 3 $y = -5x + 18$

so
$$R = (\frac{18}{5}, 0)$$
 and $S = (0, 6)$

So area PQSR = area of OPQ - area of ORS
=
$$\frac{1}{2} \left(\frac{52}{5} \right) \left(\frac{52}{3} \right) - \frac{1}{2} \left(\frac{18}{5} \right) (6)$$

= $79 \frac{1}{3} \ (\approx \frac{238}{3})$

The shape is a trapezium (since PQ and RS are parallel)

6. gradient
$$AB = -\frac{3}{4}$$

$$\Rightarrow$$
 eqtn of AB is $y-2=-\frac{3}{4}(x-5)$
 $\Rightarrow 4y=-3x+23$ (1)

so gradient CD =
$$\frac{4}{3}$$

$$\Rightarrow$$
 eqtn of CD is $y-6=\frac{4}{3}(x-6)$

$$\Rightarrow 3y = 4x - 6 \qquad (2)$$

$$(1)x4 \Rightarrow 12y = 16x - 24$$

(2)
$$x = 3 \Rightarrow 12y = -9x + 69$$

subtracting
$$\Rightarrow 0 = 25x - 93$$

$$\Rightarrow x = \frac{93}{25}, y = \frac{74}{25}$$
 at point D

7. (i) Midpoint of AB =
$$\left(\frac{4+2}{2}, \frac{5+1}{2}\right) = (3,3)$$

Midpoint of CD = $\left(\frac{7+-1}{2}, \frac{1+5}{2}\right) = (3,3)$

(ii) Gradient of AB =
$$\frac{5-1}{4-2}$$
 = 2

integralmaths.org

Gradient of CD =
$$\frac{1-5}{7-(-1)} = -\frac{1}{2}$$

- (iii) AB and CD cross at right-angles at their midpoints, so ACBD is a rhombus.
- (iv) Length AB = $\sqrt{(4-2)^2 + (5-1)^2} = \sqrt{4+16} = \sqrt{20}$ Length CD = $\sqrt{(7-(-1))^2 + (1-5)^2} = \sqrt{64+16} = \sqrt{80}$ Area = $\frac{1}{2}\sqrt{20}\sqrt{80} = 20$

Section 2: Circles

Solutions to Exercise level 1

1. (i)
$$(x-0)^2 + (y-0)^2 = 6^2$$

 $x^2 + y^2 = 36$

(ú)
$$(x-3)^2 + (y-1)^2 = 5^2$$

 $x^2 - 6x + 9 + y^2 - 2y + 1 = 25$
 $x^2 + y^2 - 6x - 2y = 15$

(iii)
$$(x+2)^2 + (y-5)^2 = 1^2$$

 $x^2 + 4x + 4 + y^2 - 10y + 25 = 1$
 $x^2 + y^2 + 4x - 10y = -28$

(iv)
$$(x-0)^2 + (y+4)^2 = 3^2$$

 $x^2 + y^2 + 8y + 16 = 9$
 $x^2 + y^2 + 8y = -7$

2. (i)
$$x^2 + y^2 = 100 = 10^2$$

Centre = (0,0), radius = 10.

(ii)
$$(x-2)^2 + (y-7)^2 = 16 = 4^2$$

Centre = $(2, 7)$, radius = 4

(iii)
$$(x+3)^2 + (y-4)^2 = 4 = 2^2$$

Centre = (-3, 4), radius = 2

(iv)
$$(x+4)^2 + (y+5)^2 = 20$$

Centre = (-4, -5), radius = $\sqrt{20}$

3. (i)
$$x^2 + y^2 + 4x - 5 = 0$$

 $x^2 + 4x + y^2 - 5 = 0$
 $(x+2)^2 - 4 + y^2 - 5 = 0$
 $(x+2)^2 + y^2 = 9$
Centre = (-2, 0), radius = 3.

(ii)
$$x^2 + y^2 - 6x + 10y + 20 = 0$$

 $x^2 - 6x + y^2 + 10y + 20 = 0$
 $(x - 3)^2 - 9 + (y + 5)^2 - 25 + 20 = 0$
 $(x - 3)^2 + (y + 5)^2 = 14$
Centre is $(3, -5)$ and radius $= \sqrt{14}$

(iii)
$$x^2 + y^2 - 2x - 3y + 3 = 0$$

 $x^2 - 2x + y^2 - 3y + 3 = 0$
 $(x - 1)^2 - 1 + (y - \frac{3}{2})^2 - \frac{9}{4} + 3 = 0$
 $(x - 1)^2 + (y - \frac{3}{2})^2 = 1 + \frac{9}{4} - 3$
 $(x - 1)^2 + (y - \frac{3}{2})^2 = \frac{1}{4}$
Centre is $(1, \frac{3}{2})$ and radius $= \frac{1}{2}$.

4. Radius of circle =
$$\sqrt{(6-4)^2 + (3-(-2))^2} = \sqrt{4+25} = \sqrt{29}$$

Equation of circle is $(x-4)^2 + (y+2)^2 = 29$
 $x^2 - 8x + 16 + y^2 + 4y + 4 = 29$
 $x^2 + y^2 - 8x + 4y = 9$

5. Centre of circle C is the midpoint of AB.

$$C = \left(\frac{2+6}{2}, \frac{O+4}{2}\right) = (4,2)$$

Radius of circle is distance
$$AC = \sqrt{(2-4)^2 + (0-2)^2} = \sqrt{4+4} = \sqrt{8}$$

Equation of circle is $(x-4)^2 + (y-2)^2 = 8$

$$x^2 - 8x + 16 + y^2 - 4y + 4 = 8$$

$$x^2 + y^2 - 8x - 4y + 12 = 0$$

6. (i)
$$x^2 + y^2 - 4x + 6y = 51$$

$$\Rightarrow (x-2)^2 + (y+3)^2 = 64$$

$$\Rightarrow \text{ centre is } (2, -3), \text{ radius } = 8$$

(ii)
$$x^2 + 2y^2 - 3x = 11$$

The coefficients of x^2 and y^2 are different, so this is not a circle.

(iii)
$$4x^{2} + 4y^{2} = 65$$

$$\Rightarrow x^{2} + y^{2} = \frac{65}{4}$$

$$\Rightarrow \text{centre is } (0, 0), \text{ radius } = \frac{\sqrt{5}.\sqrt{13}}{2}$$

(iv)
$$8x^{2} + 8y^{2} - 48x - 16y = -104$$
$$\Rightarrow x^{2} + y^{2} - 6x - 2y = -13$$
$$\Rightarrow (x - 3)^{2} + (y - 1)^{2} = -3$$

so not a círcle, as no (real) radíus.

(There are no real values (x, y) which satisfy the equation)

Section 2: Circles

Solutions to Exercise level 2

1. (i)
$$x^2 + y^2 = 8$$

Substituting in $y = 4 - x$ gives $x^2 + (4 - x)^2 = 8$
 $x^2 + 16 - 8x + x^2 = 8$
 $2x^2 - 8x + 8 = 0$
 $x^2 - 4x + 4 = 0$
 $(x - 2)^2 = 0$

The line meets the circle at just one point, so the line touches the circle and is therefore a tangent.

(ii)
$$x^2 + y^2 = 25$$

Substituting in $4y = 3x - 25 \implies y = \frac{3x - 25}{4}$
gives $x^2 + y^2 = 25$
 $x^2 + \left(\frac{3x - 25}{4}\right)^2 = 25$
 $x^2 + \frac{(3x - 25)^2}{16} = 25$
 $16x^2 + 9x^2 - 150x + 625 = 400$
 $25x^2 - 150x + 225 = 0$
 $x^2 - 6x + 9 = 0$
 $(x - 3)^2 = 0$

The line meets the circle at just one point, so the line touches the circle and is therefore a tangent.

2.

The midpoint M of QR is (0, 6).

Since a diameter which passes through M is perpendicular to QR, then the line CM must be horizontal, and therefore b=6.

Since the circle touches the x-axis, the radius of the circle must be b, i.e. 6.

The equation of the circle is therefore $(x-a)^2 + (y-6)^2 = 6^2$

The circle passes through (0, 3), so $(0-a)^2 + (3-6)^2 = 6^2$

$$a^2 + 9 = 36$$

$$a^2 = 27$$

$$a = \pm \sqrt{27} = \pm 3\sqrt{3}$$

The equation of the circle is either $(x-3\sqrt{3})^2+(y-6)^2=36$

or
$$(x+3\sqrt{3})^2+(y-6)^2=36$$
.

3.
$$x^2 + y^2 = 65$$

$$2y + x = 10 \Rightarrow x = 10 - 2y$$

Substituting in: $(10-2y)^2 + y^2 = 65$

$$100 - 40y + 4y^2 + y^2 = 65$$

$$5y^2 - 40y + 35 = 0$$

$$y^2 - 8y + 7 = 0$$

$$(y-1)(y-7)=0$$

$$y=1 \text{ or } y=7$$

When y = 1, $x = 10 - 2 \times 1 = 8$

When y = 7, $x = 10 - 2 \times 7 = -4$

so P is (8, 1) and Q is (-4, 7)
Length PQ =
$$\sqrt{(8-(-4))^2+(1-7)^2} = \sqrt{144+36} = \sqrt{180}$$

4. Substituting y = x + 1 into $(x - 1)^2 + (y + 2)^2 = k$:

$$(x-1)^2 + (x+1+2)^2 = k$$

$$(x-1)^2 + (x+3)^2 = k$$

$$x^2 - 2x + 1 + x^2 + 6x + 9 = k$$

$$2x^{2} + 4x + 10 - k = 0$$

if there are no intersections, then $b^2 - 4ac < 0$

$$a = 2, b = 4, c = 10 - k$$

$$4^2 - 4 \times 2(10 - k) < 0$$

$$16-8(10-k)<0$$

$$2-(10-k)<0$$

$$2-10+k<0$$

5. (i) Gradient of PR =
$$\frac{\mathcal{F}-6}{5-(-2)} = \frac{1}{\mathcal{F}}$$

Gradient of QR = $\frac{\mathcal{F}-0}{5-6} = \frac{\mathcal{F}}{-1} = -\mathcal{F}$
Gradient of PR × gradient of QR = $\frac{1}{\mathcal{F}} \times -\mathcal{F} = -1$
so PR and QR are perpendicular.

- (ii) The angle in a semicircle is 90°, so PQ must be a diameter.
- (iii) Since PQ is a diameter, the centre C of the circle is the midpoint of PQ

$$C = \left(\frac{-2+6}{2}, \frac{6+0}{2}\right) = (2,3)$$

Radius of circle = length
$$CQ = \sqrt{(6-2)^2 + (0-3)^2}$$

= $\sqrt{16+9} = \sqrt{25} = 5$

Equation of circle is
$$(x-2)^2 + (y-3)^2 = 25$$
.

6. (i)
$$x^2 + y^2 = 17$$

(ii) Substituting
$$x = -4$$
 and $y = -1$: $x^2 + y^2 = (-4)^2 + (-1)^2 = 16 + 1 = 17$

(iii) Gradient of radius OP =
$$\frac{-1-0}{-4-0} = \frac{1}{4}$$

Tangent to circle at P is perpendicular to radius OP so gradient of tangent = -4

Equation of tangent is
$$y - (-1) = -4(x - (-4))$$

$$y + 1 = -4(x + 4)$$

$$y+1 = -4x - 16$$

$$y + 4x + 17 = 0$$

(iv)
$$x+y=3 \Rightarrow y=3-x$$

Substituting into equation of circle:

$$\chi^{2} + (3 - \chi)^{2} = 17$$

$$x^2 + 9 - 6x + x^2 = 17$$

$$2x^2 - 6x - 8 = 0$$

$$\chi^2 - 3\chi - 4 = 0$$

$$(x-4)(x+1)=0$$

$$X = 4 \text{ or } X = -1$$

When
$$x = 4$$
, $y = 3-4 = -1$

When
$$x = -1$$
, $y = 3 - (-1) = 4$

Coordinates of Q and R are (4, -1) and (-1, 4).

(v) Tangent is
$$y+4x+1\ne 0$$

Substituting in $y=3-x$ gives $(3-x)+4x+1\ne 0$
 $20+3x=0$
 $x=-\frac{20}{3}$
When $x=-\frac{20}{3}$, $y=3+\frac{20}{3}=\frac{29}{3}$
Coordinates of S are $\left(-\frac{20}{3},\frac{29}{3}\right)$

$$y = x^{2} + 8$$

$$y = 2x^{2} + x + 6$$

$$\Rightarrow x^{2} + 8 = 2x^{2} + x + 6$$

$$\Rightarrow x^{2} + x - 2 = 0$$

$$\Rightarrow (x - 1)(x + 2) = 0$$

$$\Rightarrow x = 1, y = 9 \text{ or } x = -2, y = 12$$
So length $PQ = \sqrt{3^{2} + 3^{2}}$

$$= 3\sqrt{2}$$

Section 2: Circles

Solutions to Exercise level 3 (Extension)

1.
$$3^{2} + \left(\sqrt{27}\right)^{2} = k^{2} \Rightarrow k^{2} = 36$$
$$\Rightarrow k = 6$$

In the diagram, $\alpha = 60^{\circ}$.

The three points are spaced out equally around the circle, so the angles at the centre are 120°.

So for an equilateral triangle the vertices Q and R are

$$(3, -\sqrt{27})$$
 and $(-6, 0)$.

2. (i) M is (6, 3), and the circle has radius
$$\sqrt{4^2 + 2^2} = \sqrt{20}$$
.
So the equation is $(x-6)^2 + (y-3)^2 = 20$
 $\Rightarrow x^2 + y^2 - 12x - 6y + 25 = 0$

$$y = 3x - 15$$

$$(ii) \begin{cases} x^2 + y^2 - 12x - 6y + 25 = 0 \end{cases}$$

$$\Rightarrow x^2 + (3x - 15)^2 - 12x - 6(3x - 15) + 25 = 0$$

$$\Rightarrow x^2 - 12x + 34 = 0$$

$$\Rightarrow x = \frac{12 \pm \sqrt{144 - 136}}{2}$$

$$= 6 \pm \sqrt{2}$$

So U is (7.41, 7.24) and V is (4.59, -1.24) $\angle PUQ$ is an angle in a semicircle, so $\angle PUQ = 90^{\circ}$

$$y + 2x = 5$$
(iii) $x^{2} + y^{2} - 12x - 6y + 25 = 0$

$$\Rightarrow x^{2} + (-2x + 5)^{2} - 12x - 6(-2x + 5) + 25 = 0$$

$$\Rightarrow x^{2} - 4x + 4 = 0$$

$$\Rightarrow (x-2)^2 = 0$$

$$\Rightarrow x = 2$$
 (twice!), $y = 1$

So L_2 is a tangent to the circle at P, and therefore $\angle RPQ = 90^\circ$.

3. For all the circles passing through P and Q, the line segment PQ is a chord. For each circle, the diameter through the midpoint of PQ is a perpendicular bisector. Therefore all centres lie along this line.

Gradient of PQ =
$$\frac{10}{4} = \frac{5}{2}$$

so the gradient of the perpendicular bisector
$$=-\frac{2}{5}$$

So the equation of the line of centres is
$$y-2=-\frac{2}{5}(x-3)$$

$$\Rightarrow$$
 2x + 5y = 16

4. (i)
$$(x-5)^2 + y^2 = 5^2$$

$$\Rightarrow x^2 + y^2 - 10x = 0$$

(ii)
$$PQ = \sqrt{15^2 - 5^2}$$

= $\sqrt{200} = 10\sqrt{2} \text{ m}$

(iii) Since
$$Q = (a, b)$$

gradient
$$CQ = \frac{b}{a-5}$$

gradient QP =
$$\frac{-b}{20-a}$$

$$\Rightarrow \frac{-b}{20-a} = -\frac{a-5}{b}$$

$$\Rightarrow -b^2 = (5-a)(20-a)$$

$$\Rightarrow -b^2 = 100 - 25a + a^2$$

But Q lies on the circle, so $a^2 + b^2 - 10a = 0$

$$\Rightarrow a^2 - 10a = 100 - 25a + a^2$$

$$\Rightarrow$$
 15 a = 100

$$\Rightarrow a = \frac{20}{3}$$

$$\Rightarrow b^2 = \frac{200}{3} - \frac{400}{9} = \frac{200}{9}$$

$$\Rightarrow b = \frac{10\sqrt{2}}{3}$$

So Q =
$$\left(\frac{20}{3}, \frac{10\sqrt{2}}{3}\right)$$
 and R = $\left(\frac{20}{3}, -\frac{10\sqrt{2}}{3}\right)$

Area =
$$\frac{1}{2}$$
(QR)(CP)

$$=\frac{1}{2}\left(\frac{20\sqrt{2}}{3}\right)\left(15\right)$$

$$=50\sqrt{2} \text{ m}^2$$

