Exercise 3 (Proofs)

1. [Nov 2016 2H Q23]

T is the point on AB such that AT:TB=5:1. Show that OT is parallel to the vector $\mathbf{a}+2\mathbf{b}$.

2. [June 2014 1H Q24]

M is the midpoint of OA. N is the midpoint of OB. Prove that AB is parallel to OB.

3. [November 2015 2H Q20]

ACEF is a parallelogram. B is the midpoint of AC. M is the midpoint of BE. Show that AMD is a straight line.

4.

$$\overrightarrow{CD} = a$$
, $\overrightarrow{DE} = b$ and $\overrightarrow{FC} = a - b$

- i) Express \overrightarrow{CE} in terms of \boldsymbol{a} and \boldsymbol{b} .
- ii) Prove that \overrightarrow{FE} is parallel to \overrightarrow{CD} .
- iii) X is the point on FM such that such that FX:XM=4:1. Prove that C, X and E lie on the same straight line.

5.

OABC is a parallelogram. P is the point on AC such that $AP = \frac{2}{3}AC$.

- i) Find the vector \overrightarrow{OP} . Give your answer in terms of \boldsymbol{a} and \boldsymbol{c} .
- ii) Given that the midpoint of CB is M, prove that OPM is a straight line.
- 6. $\overrightarrow{OA} = 3\boldsymbol{a}$ and $\overrightarrow{AQ} = \boldsymbol{a}$ and $\overrightarrow{OB} = \boldsymbol{b}$ and $\overrightarrow{BC} = \frac{1}{2}\boldsymbol{b}$. Mis the midpoint of QB. Prove that AMC is a straight line.

OCR AS Mathematics Vectors

Section 1: Introduction to vectors

Exercise level 1

1. Write the following vectors in component form.

(i)

(ii)

- 2. Find the magnitude of each of these vectors.
 - (i) 3i + 4j
 - (ii) 3i 6j
 - (iii) $-\mathbf{i} \mathbf{j}$
- 3. The points A, B and C have coordinates (4, -1), (3, 7) and (-2, 3) respectively. Find
 - (i) \overrightarrow{AB}
 - (ii) \overrightarrow{BA}
 - (iii) \overrightarrow{AC}
 - (iv) \overrightarrow{CB}
- 4. The vectors **a**, **b** and **c** are given by $\mathbf{a} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ and $\mathbf{c} = \begin{pmatrix} -1 \\ -3 \end{pmatrix}$
 - Find the vectors
 - (i) b + 2a
 - (ii) $2\mathbf{c} \mathbf{b}$
 - (iii) $\mathbf{a} \mathbf{b} + 3\mathbf{c}$

Vector Geometry review

Total Marks: 13

Question 1

ABCD is a parallelogram.

$$\overrightarrow{BD} = \mathbf{a}$$
 and $\overrightarrow{AD} = \mathbf{b}$.

F is the midpoint of BC.G is the midpoint of DC.AE = 3EB.

Prove that \overrightarrow{EF} and \overrightarrow{AG} are parallel.

$$\overrightarrow{AG} = \dots \qquad \overrightarrow{EF} \stackrel{..}{..}$$
 they are parallel

(3 marks)

Question 2

P, Q, R and S are the midpoints of OX, XY, YZ and OZ respectively.

www.drfrostmaths.com

$$\overrightarrow{OP} = \mathbf{a}, \overrightarrow{XQ} = \mathbf{b} \text{ and } \overrightarrow{OS} = \mathbf{c}$$

Show that PQ is parallel to SR.

Input note: express \overrightarrow{SR} in terms of \overrightarrow{PQ} .

$$\overrightarrow{SR} = \dots \qquad \overrightarrow{PQ}$$

(5 marks)

Question 3

The figure shows a right angled triangle LMN.

The points L and M have coordinates (-1,2) and (7,-4) respectively.

Find an equation for the straight line passing through the points L and M. Give your answer in the form ax + by + c = 0, where a, b and c are integers.

.....

(4 marks)

Question 4

PQR is a triangle.

The midpoint of *PQ* is *W*.

X is the point on QR such that QX : XR = 2 : 1

PRY is a straight line.

$$\overrightarrow{PW} = \mathbf{a}$$
 and $\overrightarrow{PR} = \mathbf{b}$

Find \overrightarrow{QR} in terms of **a**and **b**.

(1 mark)

Answers

Question 1

$$\overrightarrow{AG} = 2$$

$$\overrightarrow{AG} = \frac{3}{2}\mathbf{b} - \frac{1}{2}\mathbf{a}$$

 $\overrightarrow{AG} = 2\overrightarrow{EF}$ oe so are parallel.

B2 for
$$\overrightarrow{AG} = \frac{3}{2}\mathbf{b} - \frac{1}{2}\mathbf{a}$$

or
M1 for $\mathbf{b} + \frac{1}{2}$ (their part (a)(i)) oe

Question 2

$$\overrightarrow{SR} = 1 \overrightarrow{PQ}$$

$$\overrightarrow{ZY} = -2\mathbf{c} + 2\mathbf{a} + 2\mathbf{b}$$

 $\overrightarrow{SR} = \mathbf{c} + (-\mathbf{c} + \mathbf{a} + \mathbf{b})$
so $\overrightarrow{SR} = \mathbf{a} + \mathbf{b}$
 $\overrightarrow{PQ} = \mathbf{a} + \mathbf{b}$
 $\overrightarrow{SR} = \overrightarrow{PQ}$ so they are paral

5
1 AO1.3a
2 AO2.2
2 AO2.4b

M1 for
$$\overrightarrow{ZY} = -2c + 2a + 2b$$

M1 for $\overrightarrow{SR} = c + (-c + a + b)$

M1 for $\overrightarrow{SR} = a + b$

M1 for $\overrightarrow{PQ} = a + b$

Question 3

$$3x + 4y - 5 = 0$$

$$\begin{aligned} & \text{Method 1} \\ & \text{gradient} = \frac{y_1 - y_2}{x_1 - x_2} = \frac{2 - (-4)}{-1 - 7}, = -\frac{3}{4} \\ & \frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}, \text{ so } \frac{y - y_1}{6} = \frac{x - x_1}{-8} \end{aligned} \qquad \begin{aligned} & \text{M1, A1} \\ & y - 2 = -\frac{3}{4}(x + 1) \text{ or } y + 4 = -\frac{3}{4}(x - 7) \text{ or } y = their' - \frac{3}{4}'x + c \\ & \Rightarrow \pm (4y + 3x - 5) = 0 \end{aligned} \qquad \qquad \begin{aligned} & \text{M1} \\ & \text{A1} \end{aligned} \qquad (4) \\ & \text{Method 3: Substitute } x = -1, y = 2 \text{ and } x = 7, y = -4 \text{ into } ax + by + c = 0 \\ & -a + 2b + c = 0 \\ & \text{Solve to obtain } a = 3, b = 4 \text{ and } c = -5 \text{ or multiple of these numbers} \end{aligned} \qquad \begin{aligned} & \text{M2} \\ & \text{M3} \\ & \text{A1} \end{aligned} \qquad (4)$$

Question 4

$$b-2a$$

Exercise 3

T is the point on AB such that AT: TB = 5: 1. Show that OT is parallel to the vector $\mathbf{a} + 2\mathbf{b}$.

$$\overrightarrow{OT} = 2\mathbf{b} + \frac{1}{6}(-2\mathbf{b} + 5\mathbf{a})$$

$$= 2\mathbf{b} - \frac{1}{3}\mathbf{b} + \frac{5}{6}\mathbf{a}$$

$$= \frac{5}{6}\mathbf{a} + \frac{5}{3}\mathbf{b}$$

$$= \frac{5}{6}(\mathbf{a} + 2\mathbf{b})$$

M is the midpoint of OA. N is the midpoint of OB. Prove that AB is parallel to MN.

$$\overrightarrow{AB} = -2m + 2n$$

$$= 2(-m + n)$$

$$\overrightarrow{MN} = -m + n$$

 \overrightarrow{AB} is a multiple of \overrightarrow{MN} : parallel.

Exercise 3

ACEF is a parallelogram. B is the midpoint of AC. M is the midpoint of BE. Show that AMD is a straight line.

$$\overrightarrow{DM} = -\mathbf{b} + \frac{1}{2}(3\mathbf{b} + \mathbf{a})$$

$$= -\mathbf{b} + \frac{3}{2}\mathbf{b} + \frac{1}{2}\mathbf{a}$$

$$= \frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{b} = \frac{1}{2}(\mathbf{a} + \mathbf{b})$$

$$\overrightarrow{DA} = 2\mathbf{b} + 2\mathbf{a} = 2(\mathbf{a} + \mathbf{b})$$

 \overrightarrow{DA} is a multiple of \overrightarrow{DM} and D is a common point, so AMD is a straight line.

4

$$\overrightarrow{CD} = \boldsymbol{a}, \overrightarrow{DE} = \boldsymbol{b}$$
 and $\overrightarrow{FC} = \boldsymbol{a} - \boldsymbol{b}$

i) Express \overrightarrow{CE} in terms of \boldsymbol{a} and \boldsymbol{b} .

$$a + b$$

ii) Prove that \overrightarrow{FE} is parallel to \overrightarrow{CD} .

$$\overrightarrow{FE} = a - b + a + b = 2\mathbf{a}$$
 which is a multiple of \overrightarrow{CD}

iii) X is the point on FM such that such that FX: XM=4: 1. Prove that C, X and E lie on the same straight line.

$$\overrightarrow{CX} = -\mathbf{a} + \mathbf{b} + \frac{4}{5} \left(2\mathbf{a} - \frac{1}{2}\mathbf{b} \right) = \frac{3}{5}\mathbf{a} + \frac{3}{5}\mathbf{b}$$
$$= \frac{3}{5}(\mathbf{a} + \mathbf{b})$$
$$\overrightarrow{CE} = \mathbf{a} + \mathbf{b}$$

Exercise 3

5

OABC is a parallelogram. P is the point on AC such that $AP = \frac{2}{3}AC$.

i) Find the vector \overrightarrow{OP} . Give your answer in terms of \boldsymbol{a} and \boldsymbol{c} .

$$\overrightarrow{OP} = 6\mathbf{a} + \frac{2}{3}(-6\mathbf{a} + 6\mathbf{c})$$
$$= 2\mathbf{a} + 4\mathbf{c} = 2(\mathbf{a} + 2\mathbf{c})$$

ii) Given that the midpoint of CB is M, prove that OPM is a straight line.

$$\overrightarrow{OM} = 3\mathbf{a} + 6\mathbf{c} = 3(\mathbf{a} + 2\mathbf{c})$$

 \overrightarrow{OM} is a multiple of \overrightarrow{OP} and O is a common point, therefore OPM is a straight line.

 $\overrightarrow{OA} = 3\boldsymbol{a}$ and $\overrightarrow{AQ} = \boldsymbol{a}$ and $\overrightarrow{OB} = \boldsymbol{b}$ and $\overrightarrow{BC} = \frac{1}{2}\boldsymbol{b}$. Mis the midpoint of QB. Prove that AMC is a straight line.

$$\overrightarrow{AM} = \mathbf{a} + \frac{1}{2}(-4\mathbf{a} + \mathbf{b}) = -\mathbf{a} + \frac{1}{2}\mathbf{b}$$

$$\overrightarrow{AC} = -3\mathbf{a} + \frac{3}{2}\mathbf{b} = 3\left(-\mathbf{a} + \frac{1}{2}\mathbf{b}\right)$$

 \overrightarrow{AC} is a multiple of \overrightarrow{AM} and A is a common point, therefore AMC is a straight line.

OCR AS Mathematics Vectors

Section 1: Introduction to vectors

Solutions to Exercise level 1

1. (i)
$$6i + 3j$$
 or $6i$ 3

(ii) $-6i - 5j$ or $-6j$

2. Find the magnitude of each of these vectors.

(i)
$$3i + 4j = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$$

(ii)
$$\left| 3i - 6j \right| = \sqrt{3^2 + (-6)^2} = \sqrt{45} = 3\sqrt{5}$$

(iii)
$$\left| -\frac{i}{k} - j \right| = \sqrt{(-1)^2 + (-1)^2} = \sqrt{2}$$

3. (i)
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 3 \\ 7 \end{pmatrix} - \begin{pmatrix} 4 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 8 \end{pmatrix}$$

(ii)
$$\overrightarrow{BA} = -\overrightarrow{AB} = -\begin{pmatrix} -1 \\ g \end{pmatrix} = \begin{pmatrix} 1 \\ -g \end{pmatrix}$$

(iii)
$$\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = \begin{pmatrix} -2 \\ 3 \end{pmatrix} - \begin{pmatrix} 4 \\ -1 \end{pmatrix} = \begin{pmatrix} -6 \\ 4 \end{pmatrix}$$

(iv)
$$\overrightarrow{CB} = \overrightarrow{OB} - \overrightarrow{OC} = \begin{pmatrix} 3 \\ 7 \end{pmatrix} - \begin{pmatrix} -2 \\ 3 \end{pmatrix} = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$$

4. (i)
$$b + 2a = \begin{pmatrix} 2 \\ 5 \end{pmatrix} + 2 \begin{pmatrix} 3 \\ -4 \end{pmatrix}$$

$$= \begin{pmatrix} 2 \\ 5 \end{pmatrix} + \begin{pmatrix} 6 \\ -8 \end{pmatrix}$$

$$= \begin{pmatrix} 8 \\ -3 \end{pmatrix}$$

OCR AS Maths Vectors 1 Exercise

(ii)
$$2c - b = 2 \begin{pmatrix} -1 \\ -3 \end{pmatrix} - \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

$$= \begin{pmatrix} -2 \\ -6 \end{pmatrix} - \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

$$= \begin{pmatrix} -4 \\ -11 \end{pmatrix}$$

(iii)
$$\mathbf{a} - \mathbf{b} + \mathbf{3}c = \begin{pmatrix} \mathbf{3} \\ -\mathbf{4} \end{pmatrix} - \begin{pmatrix} \mathbf{2} \\ \mathbf{5} \end{pmatrix} + \mathbf{3} \begin{pmatrix} -\mathbf{1} \\ -\mathbf{3} \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{3} \\ -\mathbf{4} \end{pmatrix} - \begin{pmatrix} \mathbf{2} \\ \mathbf{5} \end{pmatrix} + \begin{pmatrix} -\mathbf{3} \\ -\mathbf{9} \end{pmatrix}$$

$$= \begin{pmatrix} -\mathbf{2} \\ -\mathbf{18} \end{pmatrix}$$