A-Level Further Mathematics

Subject Knowledge Assessment

Complete all questions on lined paper for submission, show all working out

Vectors

1.

In Fig. 2, *OB* is produced to *D* so that BD = 2OB and *OA* is produced to *C* so that AC = 2OA. Given that $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$,

- (a) express in terms of **a** and **b**
- (i) \overrightarrow{OD} , (ii) \overrightarrow{BC} , (iii) \overrightarrow{AB} , (iv) \overrightarrow{CD} ,
- (b) state two geometrical relationships between AB and CD.

(6 marks)

Figure 3

Figure 3 shows the parallelogram OABC

 $\overrightarrow{OA} = \mathbf{a}$ $\overrightarrow{OC} = \mathbf{c}$

The midpoint of AB is M and the midpoint of BC is N.

The line *OB* intersects *MN* at the point *X*.

(a) Find in terms of \mathbf{a} and \mathbf{c} ,

(i)
$$\overrightarrow{OB}$$

(ii) \overrightarrow{MN} (2)

Given $\overrightarrow{MX} = \lambda \overrightarrow{MN}$ and that $\overrightarrow{OX} = \mu \overrightarrow{OB}$,

(b) use a vector method to find the value of λ and the value of μ.
 (c) Hence find, in its simplest form, the ratio
 Area of quadrilateral OXNC : Area of parallelogram OABC.
 (3)

(13 marks)

<u>Matrices</u>

1.

Under the transformation represented by $\begin{pmatrix} -1 & -3 \\ 2 & 4 \end{pmatrix}$,

the image of point P(a, 2) is point Q.

Can point Q be the same as point P? You **must** show your working.

[4 marks]

2.

Shape A maps to shape B by an enlargement, scale factor 3, centre the origin. Shape B maps to shape C by a rotation through 180° , centre the origin.

Shape A can be mapped to shape C by a single transformation.

Use matrices to show that the single transformation is an enlargement, centre the origin.

State the scale factor of the enlargement.

[5 marks]

3.

Use matrix multiplication to show that, in the x-y plane,

- a reflection in the line y = -x, followed by
- a rotation, 90° anticlockwise about the origin, followed by
- a reflection in the x-axis

is equivalent to a transformation by the identity matrix.

[5 marks]

Sequences

1.

The first four terms of a quadratic sequence are 10 33 64 103 ... Work out an expression for the *n*th term. [4 marks]

2.

For sequence A, the *n*th term $=\frac{n}{14n+30}$

For sequence B, the *n*th term = $\frac{2}{n}$

The *k*th term of sequence A equals the *k*th term of sequence B.

Work out the value of k.

[4 marks]

3.

A sequence is given by the rule $u_{n+2} = 2u_n + u_{n+1}$. Given that $u_6 = 75$ and $u_7 = 149$, find;

- (i) *U*₈
- (ii) *u*₅
- (iii) u_1

[5 marks]

4.

The first 7 terms of a sequence are a, b, c, 12, e, f, 50. The sequence follows the same rules as the Fibonacci sequence (i.e. the 3rd term is the sum of the 1st & 2nd, the 4th term is the sum of the 2nd & 3rd, etc.). What are the values of a, b, c, e & f?

[5 marks]

Differentiation

1.

Work out the rate of change of y with respect to x at the point on the curve

 $y = x^2(x^2 - 9)$ where x = -2You **must** show your working.

[4 marks]

2.

$$f(x) = 2x^3 - 12x^2 + 25x - 11$$

Find an expression for f'(x) in the form $a(...)^2 + b$ which would show that f(x) is an increasing function for all values of x.

 $f'(x) = \dots$

[5 marks]

3.

The curve y = f(x), where $f(x) = x^3 - ax + 1$, has a stationary point at x = -2Find the value of a

[5 marks

]

<u>Miscellaneous</u>

1.

Solve the simultaneous equations

$$2a + b - c = 8$$
$$4a - 3b - 2c = -9$$
$$6a + 3b + c = 0$$

.....

[4 marks]

2.

Find the coefficient of x^3 in the expansion of $(3-2x)^5$.

[4 marks]

3.

(i) Write down the first 3 terms, in ascending powers of x, of the binomial expansion of :

 $(1+ax)^7$, where *a* is a non-zero constant.

(ii) Given that in the expansion of $(1+ax)^7$, the coefficient of x^2 is nine times the coefficient of x, find the value of a.

[6 marks]

ABCD is a square, side length 8 cm. ABE are points on a circle, CE = DE. Find the radius of the circle.

5.

A circle with centre at the origin has radius $2\sqrt{5}$. A tangent to the circle has the equation y = 2x + k. Find the possible values of k.

[5 marks]

6.

Solve the equation $(2 + \sqrt{5})x = 6\sqrt{5}$, giving x in the form $a + b\sqrt{5}$ where a and b are integers.

[4 marks]

4.

The square *ABCD* has sides of length 105. The point *M* is the midpoint of side *BC*. The point *N* is the midpoint of *BM*. The lines *BD* and *AM* meet at the point *P*. The lines *BD* and *AN* meet at the point *Q*. What is the area of triangle APQ?

[6 marks]

Well Done

 \odot

7.