

ST MARY'S SCIENCE DEPARTMENT: CHEMISTRY

GCSE CHEMISTRY **HOMEWORK BOOK TOPIC 3:** QUANTITATIVE CHEMISTRY STUDENT BOOK

YOU MUST ANSWER ALL THREE SECTIONS IN EACH PART OF THE HOMEWORK TASKS

NAME	
CLASS	
TEACHER	
FORM	

TASK	MARK	GRADE
1		
2		
3		
4		
5		
OVERALL		

HOMEWORK SCHEDULE

Please use the following table to ensure each homework task is completed and submitted on time.

Carrying out these homework tasks can only increase your ability to gain a high grade in the GCSE examinations.

Failure to hand in work on time will lead to sanctions to complete this work.

Task	Submission Date	Completed?	On Time?
Task 1 Conservation of Mass			
Task 2 Relative Formula Mass			
Task 3 Concentration			
Task 4 Titrations			
Task 5 Percentage Yield			

SCIENCE DEPARTMENT MARKING CODE **ID** = Insufficient detail in answer **W** = Wrong understanding of science **IR** = Irrelevant information given. \mathbf{V} = This is too vague to get a mark. **AQ** = Answer the question asked **R** = Read the question/information \mathbf{M} = Maths mistake **BOD** = Benefit of the doubt given. **E** = Explain the answer further please. \mathbf{U} = Wrong units used. **SF** = Wrong significant figures used. **SP** = Wrong spelling of a technical term **SR** = Same reason given more than once. A circle means this lost you marks An underline means this gained you marks

PLEASE READ

This homework booklet has made with custom selected examination questions and activities to assess your understanding in the concepts covered in class. This will increase your familiarity with the style of examination questions.

Carrying out these questions can only increase your ability to gain a high grade in the GCSE examination.

Thank you for your hard work in completing this book, and good luck.

Mr. Turnbull

TASK 1: CONSERVATION OF MASS

SPEC CHECK

Content	Achieved?
The law of conservation of mass states that no atoms are lost or made during a chemical reaction, so the mass of the products equals the mass of the reactants.	
This means that chemical reactions can be represented by symbol equations which are balanced in terms of the numbers of atoms of each element involved on both sides of the equation.	
Students should understand the use of the multipliers in equations in normal script before a formula and in subscript within a formula.	
Some reactions may appear to involve a change in mass but this can usually be explained because a reactant or product is a gas and its mass has not been taken into account. For example: when a metal reacts with oxygen the mass of the oxide produced is greater than the mass of the metal or in thermal decompositions of metal carbonates carbon dioxide is produced and escapes into the atmosphere leaving the metal oxide as the only solid product.	
Students should be able to explain any observed changes in mass in non- enclosed systems during a chemical reaction given the balanced symbol equation for the reaction and explain these changes in terms of the particle model.	
 Whenever a measurement is made there is always some uncertainty about the result obtained. Students should be able to: Represent the distribution of results and make estimations of uncertainty Use the range of a set of measurements about the mean as a measure of uncertainty. 	

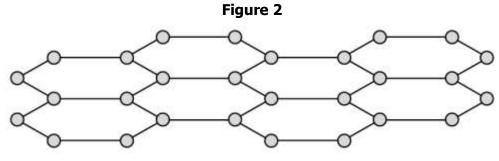
Target Setting

In this assessed piece of work, what target should I look to achieve in completing this task? Please refer to your marking feedback for your target.

From your previous work, fill in the following boxes with your personal progress in Physics.

What Topics Do I Know Well?	What Topics Do I Need to Revise?

SECTION A

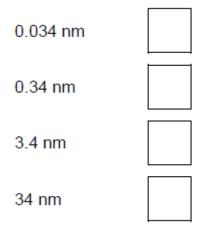

This is a revision question on a previous topic.

You should aim to spend **10 minutes** answering this section.

1. This question is about graphene and graphite.

Graphene is a single layer of graphite.

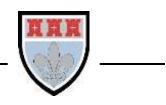
Figure 2 represents part of the structure of graphene.



1.1 Graphene is one atom thick. The diameter of the atom is 3.4×10^{-10} m

What is the thickness of a graphene layer in nanometres?

 $1 \text{ nm} = 10^{-9} \text{ m}$


Tick **one** box.

[1 mark]

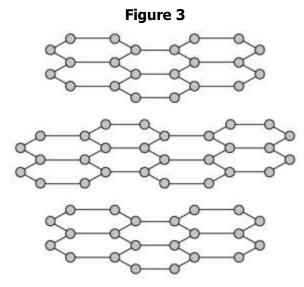
1.2 Which is one use of graphene?

[1 mark]

Tick **one** box.

As a detergent	
As a solvent	
In composites	
To produce polymers	

1.3 Graphene and graphite are used in electronics.


Suggest **one** reason why graphene is a more suitable material for use in electronics than graphite.

[1 mark]

[6 marks]

.....

1.4 Figure 3 represents part of the structure of graphite.

Graphite is used as a contact in electric motors because graphite:

- conducts electricity
- is slippery.

Explain why graphite has these properties.

You should refer to the structure and bonding of graphite in your answer.

GCSE Chemistry: Quantitative Chemistry Homework Book 7

 V

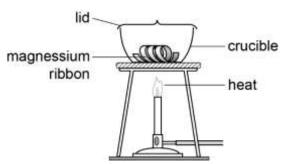
SECTION B

This is a question to revise understanding carried out in lesson.

You should aim to spend **10 minutes** answering this section.

1. A student investigated the reaction of magnesium with oxygen.

The student calculated that 4.8 g of magnesium would make 8.0 g of magnesium oxide.


The equation for the reaction is:

 $2Mg + O_2 \rightarrow 2MgO$

1.1 What mass of oxygen is required to produce 8.0 g of magnesium oxide from 4.8 g of magnesium?

1.2 The student heated magnesium to produce magnesium oxide.

Figure 1 shows the apparatus the student used.

The student:

Weighed 2.40 g of magnesium.

Heated the crucible and magnesium.

When heating lifted up the lid slightly to let oxygen in but stopped magnesium oxide escaping.

Heated until all the magnesium formed a white powder.

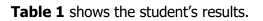

Weighed the magnesium ribbon formed.

Figure 1

[1 mark]

Table	1
-------	---

	Trial 1	Trial 2	Trial 3	Trial 4
Mass of magnesium in g	2.40	2.40	2.40	2.40
Mass of magnesium oxide in g	7.36	7.06	7.38	7.38

Calculate the mean mass of magnesium oxide produced. Give your answer to 2 decimal places

[3 marks]

1.3 The student produced less magnesium oxide than expected.

Suggest **two** reasons why.

[2 marks]

Reason 1 Reason 2

SECTION C

This is a challenge question to extend your understanding.

You should aim to spend **10 minutes** answering this section.

One mole of a substance contains the same number of atoms or molecules as one mole of any other substance.

1.1 Which contains more atoms: 56 g of Fe or 16 g of S? Show your working.

1.2 Which contains more molecules: 340 g of NH₃ or 90 g of H₂O? Show your working.

[2 Marks]

[2 Marks]

1.3 How many more atoms are there in 48 g of C compared to 48 g of Mg? Explain your answer.

[2 Marks]

1.4 Explain why 2 g of H_2 contains more molecules than 2 g of O_2 .

[2 Marks]

FEEDBACK SHEET Overall **GRADE ACHIEVED:** /23 Mark: 9 5 Section A: 8 /9 Mark Section B: 7 /6 Mark U 6 Section C: /8 Mark Knowledge and Unsatisfactory Satisfactory Good Outstanding understanding shown □ Basic Knowledge of Concepts □ Applications of Concepts Strengths: □ Quality of Written Communication □ Mathematical Skills □ Working Scientifically □ Experimental Technique □ Answering Examination Questions Previous Topics □ Analytical Skills Problem Solving **Others** (Topic Specific) □ Basic Knowledge of Concepts □ Applications of Concepts Areas to □ Quality of Written Communication □ Mathematical Skills **Improve:** □ Working Scientifically □ Experimental Technique □ Answering Examination Questions □ Previous Topics □ Analytical Skills □ Problem Solving **Others** (Topic Specific) **Progress:** Unsatisfactory Satisfactory Good Outstanding Working: Below In line with Above (your target) Effort: Poor Inconsistent Good Excellent

To improve further you need to:

Carry out independent revision.	□ Revise the equations.
Complete outstanding work.	\Box Check the units on answers.
□ Make corrections as indicated by the teacher.	\Box Check the correct amount of sig figs on answers.
Attend intervention for this topic	Check to convert values correctly.
□ Include more information in responses.	□ Show your full working out.
□ Include more key words in responses.	Check your calculations.
Attend departmental revision sessions.	Revise the science investigative skills.
Read the questions carefully.	□ Revise the key concepts of the topics.
Explain your answers in more detail.	Thoroughly check your work for mistakes.
□ Carry out revision on Seneca Learning.	Other:
Student response	

GCSE Chemistry: Quantitative Chemistry Homework Book

TASK 2: RELATIVE FORMULA MASS

SPEC CHECK

Content	Achieved?
The relative formula mass (M_r) of a compound is the sum of the relative atomic masses of the atoms in the numbers shown in the formula.	
In a balanced chemical equation, the sum of the relative formula masses of the reactants in the quantities shown equals the sum of the relative formula masses of the products in the quantities shown.	
(HT Only) Chemical amounts are measured in moles. The symbol for the unit mole is mol. The mass of one mole of a substance in grams is numerically equal to its relative formula mass. One mole of a substance contains the same number of the stated particles, atoms, molecules or ions as one mole of any other substance. The number of atoms, molecules or ions in a mole of a given substance is the Avogadro constant. The value of the Avogadro constant is 6.02×10^{23} per mole. Students should understand that the measurement of amounts in moles can apply to atoms, molecules, ions, electrons, formulae and equations, for example that in one mole of carbon (C) the number of atoms is the same as the number of molecules in one mole of carbon dioxide (CO ₂).	
(HT Only) Students should be able to use the relative formula mass of a substance to calculate the number of moles in a given mass of that substance and vice versa.	

Target Setting

In this assessed piece of work, what target should I look to achieve in completing this task? Please refer to your marking feedback for your target.

From your previous work, fill in the following boxes with your personal progress in Physics.

What Topics Do I Know Well?	What Topics Do I Need to Revise?

GCSE Chemistry: Quantitative Chemistry Homework Book

St Mary's Catholic School

15

SECTION A	
SECTION A This is a revision question on a previous topic.	
You should aim to spend 10 minutes answering this section.	
Tou should aim to spend To minutes answering this section.	
1. Calculate the mass of the following:	
1.1 3 moles of ammonia	
	[1 Mark]
	[]
1.2 4.5 moles of methane	
	[1 Mark]
1.3 0.2 moles of calcium carbonate	
	[1 Mark]
1.4 1.4 moles of magnesium hydroxide.	
	[1 Mark]
Calculate the number of moles in the following:	
1.5 136 g of ammonia	
	[1 Mark]

St Mary's Catholic School	
1.6 160 g of methane	\checkmark
	[1 Mark]
1.7 250 g of calcium carbonate	
	[1 Mark]
1.8 2.9 g of magnesium hydroxide.	
	[1 Mark]
10 15 2 g of an unknown substance was found to contain 0.15 moles	
1.9 15.3 g of an unknown substance was found to contain 0.15 moles. Calculate the relative formula mass of the substance.	
	[4 Mar.1.]
	[1 Mark]

.....

SECTION B

This is a question to revise understanding carried out in lesson.

You should aim to spend **10 minutes** answering this section.

1. A student is preparing a sample of sodium nitrate, NaNO₃. She mixes 17 g of sodium oxide with an excess of nitric acid. The equation for the reaction is: $Na_2O + 2HNO_3 \rightarrow 2NaNO_3 + H_2O$

Relative atomic masses (A_r): Na = 23, O = 16, N = 14, H = 1.

1.1 Calculate the number of moles in 17 g of sodium oxide.

.....

1.2 Calculate the maximum mass of sodium nitrate that can be produced in this reaction.

Aluminium and iron oxide (Fe_2O_3) react together to produce aluminium oxide (Al_2O_3). The equation for the reaction is:

$$2AI + Fe_2O_3 \rightarrow AI_2O_3 + 2Fe$$

1.3 Calculate the mass of iron that is produced by reacting 20 g of iron oxide with an excess of aluminium.

Relative atomic masses (A_r): Al = 27, O = 16, Fe = 56.

[4 Marks]

[2 Marks]

[3 Marks]

	\checkmark

[4 Marks]

SECTION C

This is a challenge question to extend your understanding.

You should aim to spend **10 minutes** answering this section.

1. Describe how you can calculate the relative formula mass of a compound.

FEEDBACK SHEET Overall **GRADE ACHIEVED:** /22 Mark: 9 5 Section A: 8 /9 Mark Section B: 7 /9 Mark U 6 Section C: /4 Mark Knowledge and Unsatisfactory Satisfactory Good Outstanding understanding shown □ Basic Knowledge of Concepts □ Applications of Concepts Strengths: □ Quality of Written Communication □ Mathematical Skills □ Working Scientifically □ Experimental Technique □ Answering Examination Questions Previous Topics □ Analytical Skills Problem Solving **Others** (Topic Specific) □ Basic Knowledge of Concepts □ Applications of Concepts Areas to □ Quality of Written Communication □ Mathematical Skills **Improve:** □ Working Scientifically □ Experimental Technique □ Answering Examination Questions □ Previous Topics □ Analytical Skills □ Problem Solving **Others** (Topic Specific) **Progress:** Unsatisfactory Satisfactory Good Outstanding Working: Below In line with Above (your target) Effort: Poor Inconsistent Good Excellent

To improve further you need to:

Carry out independent revision.	□ Revise the equations.
Complete outstanding work.	\Box Check the units on answers.
□ Make corrections as indicated by the teacher.	\Box Check the correct amount of sig figs on answers.
Attend intervention for this topic	Check to convert values correctly.
Include more information in responses.	□ Show your full working out.
Include more key words in responses.	Check your calculations.
Attend departmental revision sessions.	Revise the science investigative skills.
Read the questions carefully.	\Box Revise the key concepts of the topics.
Explain your answers in more detail.	Thoroughly check your work for mistakes.
□ Carry out revision on Seneca Learning.	Other:
Student response	

GCSE Chemistry: Quantitative Chemistry Homework Book

TASK 3: CONCENTRATION

SPEC CHECK

Content	Achieved?
(HT Only)	
The concentration of a solution can be measured in mol/dm ³ .	
The amount in moles of solute or the mass in grams of solute in a given	
volume of solution can be calculated from its concentration in mol/dm ³ .	
If the volumes of two solutions that react completely are known and the	
concentration of one solution is known, the concentration of the other solution can be calculated.	
Students should be able to explain how the concentration of a solution in	
mol/dm ³ is related to the mass of the solute and the volume of the solution.	
Many chemical reactions take place in solutions. The concentration of a solution can be measured in mass per given volume of solution, e.g. grams per dm^3 (g/dm ³).	
Students should be able to:	
 Calculate the mass of solute in a given volume of solution of known 	
concentration in terms of mass per given volume of solution	
• (HT only) explain how the mass of a solute and the volume of a solution is related to the concentration of the solution.	

Target Setting

In this assessed piece of work, what target should I look to achieve in completing this task? Please refer to your marking feedback for your target.

From your previous work, fill in the following boxes with your personal progress in Physics.

What Topics Do I Know Well?	What Topics Do I Need to Revise?

SECTION A

This is a revision question on a previous topic.	
You should aim to spend 10 minutes answering this section.	
1. Calculate the amount in moles in each of the following solutions:	
1.1 0.0350 dm ³ of a solution with a concentration of 0.108 mol/dm ³	
	[1 Mark]
	[1 Mark]
1.2 41.8 cm ³ of a solution with a concentration of 0.0501 mol/dm ³	
	[2 Marks]
Calculate the concentration of each of the following solutions:	
1.3 0.0250 dm ³ of a solution that contains 0.345 mol of substance	
	[1 Mark]
1.4 18.90 cm ³ of a solution that contains 0.480 mol of substance	
	[2 Marks]
	[]

SECTION B

This is a question to revise understanding carried out in lesson.

You should aim to spend **10 minutes** answering this section.

1. A student is investigating the effect of concentration on the colour of a solution of copper sulfate. She wishes to make up 250 cm³ of a solution of copper sulfate, CuSO₄, with a concentration of 0.50 mol/dm³, that she can dilute.

1.1 State the colour of a solution of copper sulfate.

1.2 A solution with a concentration of 0.50 mol/dm³ contains 0.50 mol of copper sulfate, CuSO₄, per decimetre cubed, dm³, of solution.

Calculate the concentration of this solution in g/dm^3 .

1.3 Describe how the student could make up 250 cm³ of a solution of copper sulfate with the desired concentration.

Include the mass of copper sulfate that must be dissolved and details of the practical steps needed.

[4 marks]

[3 marks]

[1 mark]

1.4 How much water must be added to 10 cm³ of the 0.50 mol/dm³ solution to produce a solution with a concentration of 0.25 mol/dm³?

[1 mark]

••••••	 	•••••

SECTION C

This is a challenge question to extend your understanding.

You should aim to spend **10 minutes** answering this section.

1. A student used a pipette to add 25.0 cm³ of KOH of unknown concentration to a conical flask.

The student carried out a titration experiment to find the volume of $0.150 \text{ mol/dm}^3 \text{ H}_2\text{SO}_4$ needed to neutralise the KOH.

The student found that, on average, 17.20 cm^3 of the H₂SO₄ solution was required for neutralisation.

1.1 Write a balanced symbol equation for the neutralisation reaction between H_2SO_4 and KOH.

[1 Mark]

1.2 Calculate the concentration of the KOH solution.

[5 marks]

FEEDBACK SHEET Overall **GRADE ACHIEVED:** /21 Mark: 9 5 Section A: 8 /6 Mark 7 Section B: /9 Mark U 6 Section C: /6 Mark Knowledge and Unsatisfactory Satisfactory Good Outstanding understanding shown □ Basic Knowledge of Concepts □ Applications of Concepts Strengths: □ Quality of Written Communication □ Mathematical Skills □ Working Scientifically □ Experimental Technique □ Answering Examination Questions Previous Topics □ Analytical Skills Problem Solving **Others** (Topic Specific) □ Basic Knowledge of Concepts □ Applications of Concepts Areas to □ Quality of Written Communication □ Mathematical Skills **Improve:** □ Working Scientifically □ Experimental Technique □ Answering Examination Questions □ Previous Topics □ Analytical Skills □ Problem Solving **Others** (Topic Specific) **Progress:** Unsatisfactory Satisfactory Good Outstanding Working: Below In line with Above (your target) Effort: Poor Inconsistent Good Excellent

To improve further you need to:

Carry out independent revision.	□ Revise the equations.
□ Complete outstanding work.	\Box Check the units on answers.
□ Make corrections as indicated by the teacher.	\Box Check the correct amount of sig figs on answers.
Attend intervention for this topic	□ Check to convert values correctly.
Include more information in responses.	□ Show your full working out.
Include more key words in responses.	□ Check your calculations.
Attend departmental revision sessions.	\Box Revise the science investigative skills.
Read the questions carefully.	\Box Revise the key concepts of the topics.
Explain your answers in more detail.	□ Thoroughly check your work for mistakes.
□ Carry out revision on Seneca Learning.	Other:
Student response	

GCSE Chemistry: Quantitative Chemistry Homework Book

TASK 4: TITRATIONS

SPEC CHECK

Content	Achieved?
 The volumes of acid and alkali solutions that react with each other can be measured by titration using a suitable indicator. Students should be able to: describe how to carry out titrations using strong acids and strong alkalis only (sulfuric, hydrochloric and nitric acids only) to find the reacting volumes accurately. 	
• (HT Only) calculate the chemical quantities in titrations involving concentrations in mol/dm ³ and in g/dm ³ .	

Target Setting

In this assessed piece of work, what target should I look to achieve in completing this task? Please refer to your marking feedback for your target.

From your previous work, fill in the following boxes with your personal progress in Physics.

What Topics Do I Need to Revise?

SECTION A

This is a revision question on a previous topic.

You should aim to spend **10 minutes** answering this section.

1. In a titration experiment, 20.0 cm³ of sodium hydroxide, NaOH, with an unknown concentration was placed in a conical flask. 25.10 cm³ of a solution of hydrochloric acid, HCl, with a concentration of 0.128 mol/dm³ was needed for neutralisation.

Give all your answers to the relevant questions below to three significant figures.

1.1 Sketch a diagram to show the titration set up at the point neutralisation is reached.

[2 marks]

1.2 Calculate the amount in moles of HCl in 25.10 cm³ of a solution with a concentration of 0.128 mol/dm³. [2 marks]

1.3 Write an equation for the neutralisation reaction between HCl and NaOH.

[1 mark]

1.4 Use your answer to parts **1.2** and **1.3** to determine the amount of NaOH in 20.0 cm³ of NaOH that is exactly neutralised by the HCl.

[1 mark]

1.5 Calculate the concentration of the NaOH solution in the conical flask.

[2 marks]

SECTION B

This is a question to revise understanding carried out in lesson.

You should aim to spend **10 minutes** answering this section.

1. A student titrated 25.0 cm³ portions of dilute sulfuric acid with a 0.105 mol/dm³ sodium hydroxide solution.

1.1 Table 4 shows the student's results.

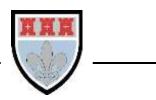
Table 4

	Titration	Titration	Titration	Titration	Titration
	1	2	3	4	5
Volume of sodium hydroxide solution in cm ³	23.50	21.10	22.10	22.15	22.15

The equation for the reaction is:

 $2 \text{ NaOH} + \text{H}_2 \text{SO}_4 \rightarrow \text{Na}_2 \text{SO}_4 + 2 \text{H}_2 \text{O}$

Calculate the concentration of the sulfuric acid in mol/dm³


Use only the student's concordant results.

Concordant results are those within 0.10 cm³ of each other.

Concentration of Sulfuric Acid = mol/dm³

[5 marks]

1.2 Explain why the student should use a pipette to measure the dilute sulfuric acid and a burette to measure the sodium hydroxide solution.

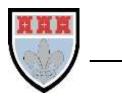
[2 marks]

[2 marks]

1.3 Calculate the mass of sodium hydroxide in 30.0 cm³ of a 0.105 mol/dm³ solution. Relative formula mass (M_r): NaOH = 40

r,
Mass of Sodium Hydroxide =g

SECTION C


This is a challenge question to extend your understanding.

You should aim to spend **10 minutes** answering this section.

1. A student investigated the volume of sulfuric acid that reacted with 25 cm³ sodium hydroxide.

Describe a titration method the student could use in this investigation.

[6	marks]
----	--------

1.2 In the titration the student used 25.0 cm³ of sodium hydroxide.

This volume reacted with exactly 20.0 cm³ of 0.1 mol/dm³ of sulfuric acid solution.

The equation for the reaction is:

 $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$

What is the concentration in mol/dm³ of the sodium hydroxide solution?

[4 marks]

FEEDBACK SHEET Overall **GRADE ACHIEVED:** /27 Mark: 9 5 Section A: 8 /8 Mark Section B: 7 /9 Mark U 6 Section C: /10 Mark Knowledge and Unsatisfactory Satisfactory Good Outstanding understanding shown □ Basic Knowledge of Concepts □ Applications of Concepts Strengths: □ Quality of Written Communication □ Mathematical Skills □ Working Scientifically □ Experimental Technique □ Answering Examination Questions Previous Topics □ Analytical Skills Problem Solving **Others** (Topic Specific) □ Basic Knowledge of Concepts □ Applications of Concepts Areas to □ Quality of Written Communication □ Mathematical Skills **Improve:** □ Working Scientifically □ Experimental Technique □ Answering Examination Questions □ Previous Topics □ Analytical Skills □ Problem Solving **Others** (Topic Specific) **Progress:** Unsatisfactory Satisfactory Good Outstanding Working: Below In line with Above (your target) Effort: Poor Inconsistent Good Excellent

To improve further you need to:

Carry out independent revision.	□ Revise the equations.
Complete outstanding work.	\Box Check the units on answers.
□ Make corrections as indicated by the teacher.	\Box Check the correct amount of sig figs on answers.
Attend intervention for this topic	Check to convert values correctly.
□ Include more information in responses.	□ Show your full working out.
□ Include more key words in responses.	Check your calculations.
Attend departmental revision sessions.	Revise the science investigative skills.
Read the questions carefully.	\Box Revise the key concepts of the topics.
Explain your answers in more detail.	□ Thoroughly check your work for mistakes.
□ Carry out revision on Seneca Learning.	Other:
Student response	

GCSE Chemistry: Quantitative Chemistry Homework Book

TASK 5: PERCENTAGE YIELD

SPEC CHECK

Content	Achieved?
Even though no atoms are gained or lost in a chemical reaction, it is not always possible to obtain the calculated amount of a product because:The reaction may not go to completion because it is reversible	
• Some of the product may be lost when it is separated from the reaction mixture	
• Some of the reactants may react in ways different to the expected reaction. The amount of a product obtained is known as the yield. When compared with the maximum theoretical amount as a percentage, it is called the percentage yield.	
% Yield = Mass of product actually made Maximum theoretical mass of product × 100	
 Students should be able to: Calculate the percentage yield of a product from the actual yield of a reaction (HT only) Calculate the theoretical mass of a product from a given mass of reactant and the balanced equation for the reaction. 	
The atom economy (atom utilisation) is a measure of the amount of starting materials that end up as useful products. It is important for sustainable development and for economic reasons to use reactions with high atom economy.	
The percentage atom economy of a reaction is calculated using the balanced equation for the reaction as follows:	
$\frac{\text{Relative formula mass of desired product from equation}}{\text{Sum of relative formula masses of all reactants from equation}} \times 100$	
 Students should be able to: Calculate the atom economy of a reaction to form a desired product from the balanced equation (HT only) Explain why a particular reaction pathway is chosen to produce a specified product given appropriate data such as atom economy (if not 	
calculated), yield, rate, equilibrium position and usefulness of by-products.	

Target Setting

In this assessed piece of work, what target should I look to achieve in completing this task? Please refer to your marking feedback for your target.

From your previous work, fill in the following boxes with your personal progress in Physics.

What Topics Do I Know Well?	What Topics Do I Need to Revise?

SECTION A

This is a revision question on a previous topic.

You should aim to spend **10 minutes** answering this section.

1.Calculate which substance in the following pairs is heavier:

1.1 1 mole of NaCl or 1 mole of Na₂CO₃

1.2 0.5 moles of Mg or 5 moles of H_2

[2 marks]

[2 marks]

1.3 10 moles of He or 1.5 moles of O_2 .

[2 marks]

SECTION B

This is a question to revise understanding carried out in lesson.

You should aim to spend **10 minutes** answering this section.

1. Aspirin, $C_9H_8O_4$, is a common painkiller.

Pharmaceutical companies make aspirin by reacting salicylic acid, C₇H₆O₃, with one of two chemicals:

salicylic acid can be reacted with ethanoyl chloride, C₂H₃OCl

 $C_7H_6O_3\,+\,C_2H_3OCI\rightarrow C_9H_8O_4\,+\,HCI$

or salicylic acid can be reacted with ethanoic anhydride, $C_4H_6O_3$

 $C_7H_6O_3 + C_4H_6O_3 \rightarrow C_9H_8O_4 + C_2H_4O_2$

Look at the table of relative formula masses:

Substance	Relative formula mass, <i>M</i> _r
$C_7H_6O_3$	138
C ₂ H ₃ OCI	78.5
C₄H ₆ O ₃	102
HCI	36.5
C ₂ H ₄ O ₂	60
C ₉ H ₈ O ₄	180

Calculate the atom economy of making aspirin

1.1 from salicyclic acid and ethanoyl chloride

[2 marks]

1.2 from salicyclic acid and ethanoic anhydride.

[2 marks]

GCSE Chemistry: Quantitative Chemistry Homework Book 38

Relative atomic masses (A_r): C = 12; H = 1; O = 16

1.3 State which method of production has the higher atom economy.

1.4 Atom economy is not the only factor that must be considered when choosing the most appropriate chemical reaction for producing a product.

State **two** other factors that you might consider.

[2 marks]

[1 mark]

SECTION C

This is a challenge question to extend your understanding.

You should aim to spend **10 minutes** answering this section.

1. Industrially ethanol can be produced by two different methods.

Reaction 1: $C_2H_4 + H_2O \rightarrow C_2H_5OH$

Reaction 2: $C_6H_{12}O_6 \rightarrow 2CO_2 + 2C_2H_5OH$

1.1 Explain why the atom economy in **reaction 1** is equal to 100%.

1.2 Calculate the atom economy for reaction 2.

Use the equation.

Relative formula mass of desired product from equation \times 100 Atom economy = Sum of relative formula masses of all reactants from equations

Relative atomic masses A_r : C = 12, H = 1, O = 16

[5 Marks]

GCSE Chemistry: Quantitative Chemistry Homework Book 40

[2 Marks]

FEEDBACK SHEET Overall **GRADE ACHIEVED:** /20 Mark: 9 5 Section A: 8 /6 Mark Section B: 7 /7 Mark U 6 Section C: /7 Mark Knowledge and Unsatisfactory Satisfactory Good Outstanding understanding shown □ Basic Knowledge of Concepts □ Applications of Concepts Strengths: □ Quality of Written Communication □ Mathematical Skills □ Working Scientifically □ Experimental Technique □ Answering Examination Questions Previous Topics □ Analytical Skills Problem Solving **Others** (Topic Specific) □ Basic Knowledge of Concepts □ Applications of Concepts Areas to □ Quality of Written Communication □ Mathematical Skills **Improve:** □ Working Scientifically □ Experimental Technique □ Answering Examination Questions □ Previous Topics □ Analytical Skills □ Problem Solving **Others** (Topic Specific) **Progress:** Unsatisfactory Satisfactory Good Outstanding Working: Below In line with Above (your target) Effort: Poor Inconsistent Good Excellent

To improve further you need to:

Carry out independent revision.	□ Revise the equations.			
Complete outstanding work.	\Box Check the units on answers.			
□ Make corrections as indicated by the teacher.	\Box Check the correct amount of sig figs on answers.			
Attend intervention for this topic	Check to convert values correctly.			
Include more information in responses.	Show your full working out.			
Include more key words in responses.	Check your calculations.			
Attend departmental revision sessions.	Revise the science investigative skills.			
Read the questions carefully.	\Box Revise the key concepts of the topics.			
Explain your answers in more detail.	Thoroughly check your work for mistakes.			
□ Carry out revision on Seneca Learning.	Other:			
Student response				

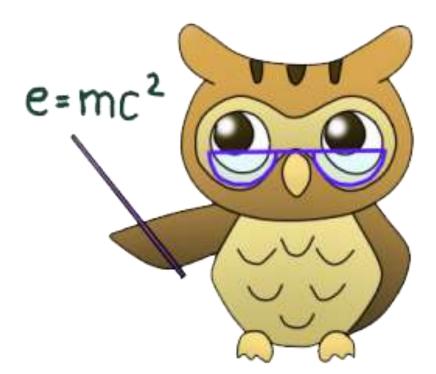
GCSE Chemistry: Quantitative Chemistry Homework Book

0 Helium 2	20 Ne 10	Ar argon 18	84 Kr 36 36	131 Xe 54	[222] Rn 86	[294] Og 118
~	19 fluorine 9	35.5 CI chorine 17	80 Br 35 35	127 53	At At astatine 85	[293] Ts 117
9	16 oxygen 8	32 suffur 16	79 Se 34	128 Te 52	Po Po 84	[293] Lv 116
ŝ	14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83	[289] Mc 115
4	C 12 6	28 Silicon 14	73 Ge germanium 32	119 50	207 Pb 82	[289] FI 114
ę	11 B 5	27 AI aluminium 13	70 Ga gallum 31	115 In indium 49	204 TI thallium 81	[286] Nh 113
			65 Zn ^{Zinc} 30	112 Cd cadmium 48	201 Hg mercury 80	[285] Cn ^{copemicium} 112
			63.5 Cu copper 29	108 Ag silver 47	197 Au 79	[281] Rg ^{noentgenium} 111
			59 Nickel 28	106 Pd palladium 46	195 Pt 78	E
			59 Co cobalt 27	103 Rh 45	192 Ir 77	[278] Mt 109
hydrogen			56 Fe 26		190 Os 76	Hssium 108
6. S		1	52 55 Cr Mn chromium manganese 24 25	[97] Tc technetium 43	H 186 Re In rhentum 75	[270] Bh bohrium 107
Key	relative atomic mass atomic symbol atomic (proton) number		52 Cr chromium 24	96 Mo molybdenum 42	184 W tungsten 74	[269] Sg seaborgium 106
			51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73	Db Db 105
			48 Ti 22	91 Zr zirconium 40	178 Hf 72	[267] Rf nutherfordium 104
			45 Sc scandium 21	89 89 39	139 La* tanthanum 57	[227] Ac* actinium 89
7	9 Be beryllium 4	24 Mg 12	40 Ca calcium 20	88 Sr strontium 38	137 Ba ^{barlum} 56	[226] Ra radium 88
-	7 Li 3	23 Na sodium	39 K potassium 19	85 Rb ^{nubidium} 37	133 Cs caestum 55	[223] Fr francium 87

Relative atomic masses for Cu and CI have not been rounded to the nearest whole number.

* The Lanthanides (atomic numbers 58 – 71) and the Actinides (atomic numbers 90 – 103) have been omitted.

The Periodic Table of Elements


Acknowledgements

This document has been produced by Mr J Turnbull.

All relevant information has been credited in the document.

This document has been produced for educational purposes only.

This document has been produced for the AQA GCSE Science Specification.

