

ST MARY'S SCIENCE DEPARTMENT: CHEMISTRY

GCSE CHEMISTRY **HOMEWORK BOOK TOPIC 3:** QUANTITATIVE CHEMISTRY STUDENT BOOK

YOU MUST ANSWER ALL THREE SECTIONS IN EACH PART OF THE HOMEWORK TASKS

NAME	
CLASS	
TEACHER	
FORM	

TASK	MARK	GRADE
1		
2		
3		
4		
5		
OVERALL		

GCSE
CHEMISTRY
YEAR 10
TOPIC 1

HOMEWORK SCHEDULE

Please use the following table to ensure each homework task is completed and submitted on time.

Carrying out these homework tasks can only increase your ability to gain a high grade in the GCSE examinations.

Failure to hand in work on time will lead to sanctions to complete this work.

Task	Submission Date	Completed?	On Time?
Task 1 Conservation of Mass			
Task 2 Relative Formula Mass			
Task 3 Concentration			
Task 4 Titrations			
Task 5 Percentage Yield			

SCIENCE DEPARTMENT MARKING CODE

ID = Insufficient detail in answer

W = Wrong understanding of science

IR = Irrelevant information given.

V = This is too vague to get a mark.

AQ = Answer the question asked

R = Read the question/information

M = Maths mistake

BOD = Benefit of the doubt given.

E = Explain the answer further please.

U = Wrong units used.

SF = Wrong significant figures used.

SP = Wrong spelling of a technical term

SR = Same reason given more than once.

A circle means this lost you marks

An underline means this gained you marks

PLEASE READ

This homework booklet has made with custom selected examination questions and activities to assess your understanding in the concepts covered in class. This will increase your familiarity with the style of examination questions.

Carrying out these questions can only increase your ability to gain a high grade in the GCSE examination.

Thank you for your hard work in completing this book, and good luck.

Mr. Turnbull

TASK 1: CONSERVATION OF MASS

SPEC CHECK

Content	Achieved?
The law of conservation of mass states that no atoms are lost or made during a chemical reaction, so the mass of the products equals the mass of the reactants.	
This means that chemical reactions can be represented by symbol equations which are balanced in terms of the numbers of atoms of each element involved on both sides of the equation.	
Students should understand the use of the multipliers in equations in normal script before a formula and in subscript within a formula.	
Some reactions may appear to involve a change in mass but this can usually be explained because a reactant or product is a gas and its mass has not been taken into account. For example: when a metal reacts with oxygen the mass of the oxide produced is greater than the mass of the metal or in thermal decompositions of metal carbonates carbon dioxide is produced and escapes into the atmosphere leaving the metal oxide as the only solid product. Students should be able to explain any observed changes in mass in non-enclosed systems during a chemical reaction given the balanced symbol equation for the reaction and explain these changes in terms of the particle model.	
Whenever a measurement is made there is always some uncertainty about the result obtained. Students should be able to: Represent the distribution of results and make estimations of uncertainty Use the range of a set of measurements about the mean as a measure of uncertainty.	

Target Setting

In this assessed piece of work, what target should I look to achieve in completing this task? Please refer to your marking feedback for your target.

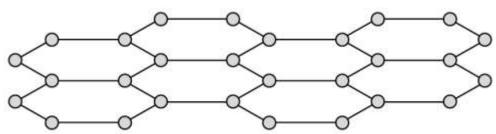
From your previous work, fill in the following boxes with your personal progress in Physics.

What Topics Do I Know Well?

What Topics Do I Need to Revise?				

SECTION A

This is a revision question on a previous topic.


You should aim to spend **10 minutes** answering this section.

1. This question is about graphene and graphite.

Graphene is a single layer of graphite.

Figure 2 represents part of the structure of graphene.

Figure 2

1.1 Graphene is one atom thick. The diameter of the atom is 3.4 \times $10^{-10}~\text{m}$

What is the thickness of a graphene layer in nanometres?

$$1 \text{ nm} = 10^{-9} \text{ m}$$

[1 mark]

Tick **one** box.

- 0.034 nm
- 0.34 nm
- 3.4 nm
- 34 nm

1.2 Which is one use of	graphene?	
•		[1 mark]
Tick one box.		
As a detergent		
As a solvent		
In composites		
To produce polymers		
1.3 Graphene and graph	nite are used in electronics.	
Suggest one reason why	y graphene is a more suitable material for use in electronics than g	raphite.
		[1 mark]
1 4 Figure 3 represents	s part of the structure of graphite.	
1.4 rigure 3 represents	Figure 3	
Graphite is used as a con	ntact in electric motors because graphite:	
• conducts electricity		
• is slippery.		
Explain why graphite has	s these properties.	
You should refer to the s	structure and bonding of graphite in your answer.	
		[6 marks]

St Mary's Catholic School	HHH

HHH

SECTION B

This is a question to revise understanding carried out in lesson.

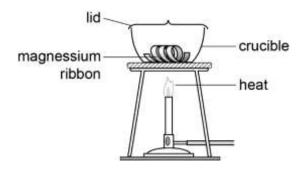
You should aim to spend **10 minutes** answering this section.

1. A student investigated the reaction of magnesium with oxygen.

The student calculated that 4.8 g of magnesium would make 8.0 g of magnesium oxide.

The equation for the reaction is:

$$2Mg + O_2 \rightarrow 2MgO$$


1.1 \	What	mass of	oxygen	is required	to produc	e 8.0 g of	magnesium	oxide from	4.8 g of	f magnesium'
-------	------	---------	--------	-------------	-----------	------------	-----------	------------	----------	--------------

[1 mark]

1.2 The student heated magnesium to produce magnesium oxide.

Figure 1 shows the apparatus the student used.

Figure 1

The student:

Weighed 2.40 g of magnesium.

Heated the crucible and magnesium.

When heating lifted up the lid slightly to let oxygen in but stopped magnesium oxide escaping.

Heated until all the magnesium formed a white powder.

Weighed the magnesium ribbon formed.

Table 1 shows the student's results.

Table 1

	Trial 1	Trial 2	Trial 3	Trial 4
Mass of magnesium in g	2.40	2.40	2.40	2.40
Mass of magnesium oxide in g	7.36	7.06	7.38	7.38

Calculate the mean mass of magnesium oxide produced. Give your answer to 2 decimal places	
	[3 marks]
4.2. The shortest and the same are size with the same and all	
1.3 The student produced less magnesium oxide than expected.	
Suggest two reasons why.	
	[2 marks]
Reason 1	
Reason 2	

HHH

SECTION C

This is a revision question to consolidate your understanding.

You should aim to spend **10 minutes** answering this section.

1. The diagram shows an atom of magnesium and an atom of chlorine.

1.1 Describe, in terms of electrons, how magnesium atoms and chlorine atoms change into ions to produce magnesium chloride (MgCl₂).

[4 marks]
1.2 Calculate the relative formula mass (M_1) of magnesium chloride (MgCl ₂).
Relative atomic masses (A_r): magnesium = 24; chlorine = 35.5
[2 marks]

Relative formula mass $(M_r) =$

FEEDBACK SHEET

Overall		/21			(GRADE ACHIEVED:		
Mark:		/ 21						
					5			1 📙
Section A: Mark		/9			4			U \square
Section B: Mark		/6			2			
Section C: Mark		/6						
Knowledg and understandi shown		Unsatisfa	actory	Satisfactor	у	Good	d	Outstanding
Strengths	☐ Quality☐ Working	of Writte Scientiing Skills Skills	nination Quest		□ Mat □ Exp □ Pre	hemati	•	
Improve: ☐ Quali☐ Work☐ Answ☐ Analy		□ Quality□ Working	of Writte Scientiing Skills Skills	nination Quest	ation	☐ Mat	:hemati erimen vious T	•
Progress:	:	Unsatisfa	actory	Satisfactory		Good		Outstanding
Working:		Belo	W	In line with	Α	bove		(your target)
Effort:		Poo		Inconsistent		Good		Excellent
To improve fu	ırthe	er you nee	ed to:					
□ Carry out independent revision.□ Complete outstanding work.				□ Revise the equations.□ Check the units on answers.				
☐ Make corrections as indicated by t				er.	☐ Check the correct amount of sig figs on answers.			
☐ Attend intervention for this topic☐ Include more information in respon			•	SAS	□ Check to convert values correctly.□ Show your full working out.			
☐ Include more key words in resp			•		☐ Check your calculations.			
☐ Attend departmental revision sessions				☐ Revise the science investigative skills.				
☐ Read the questions carefully.					☐ Revise the key concepts of the topics.			
☐ Explain your answers in more detail.				l.	☐ Thoroughly check your work for mistakes.			
☐ Carry out revision on Seneca Lo					Other:			

Student response

TASK 2: RELATIVE FORMULA MASS

SPEC CHECK

Content	Achieved?
The relative formula mass (M_r) of a compound is the sum of the relative atomic masses of the atoms in the numbers shown in the formula. In a balanced chemical equation, the sum of the relative formula masses of the reactants in the quantities shown equals the sum of the relative formula masses of the products in the quantities shown.	

Target Setting

In this assessed piece of work, what target should I look to achieve in completing this task? Please refer to your marking feedback for your target.

From your previous work, fill in the following boxes with your personal progress in Physics.

What Topics Do I Know Well?			

What Top	ics Do I	Need to	Revise?

SECTION A

This is a revision question on a previous topic.

You should aim to spend **10 minutes** answering this section.

- **1.** This question is about the structure of the atom.
- **1.1** Complete the sentences.

Choose answers from the box.

Each word may be used once, more than once, or not at all.

electron	ion	•	neutron
nucleus	•	proton	

[5 marks]

The centre of the atom is the
The two types of particle in the centre of the atom are the proton
and the
James Chadwick proved the existence of the
Niels Bohr suggested particles orbit the centre of the atom. This type of particle is the
The two types of particle with the same mass are the neutron and the

Table 2 shows information about two isotopes of element **X**.

Table 2

	Mass number	Percentage (%) abundance
Isotope 1	63	70
Isotope 2	65	30

1.2 Calculate the relative atomic mass (A_r) of element **X** using the equation:

A _r =	(mass number \times percentage) of isotope 1 + (mass number \times percentage) of isotope 2
Λr-	100

Use Table 2.
Give your answer to 1 decimal place.
[2 marks
Ar =
1.3 Suggest the identity of element X .
Use the periodic table.
[1 mark
Element X is
1.4 The radius of an atom of element X is 1.2×10^{-10} m
The radius of the centre of the atom is $1/10~000$ the radius of the atom.
Calculate the radius of the centre of an atom of element X .
Give your answer in standard form.
[2 marks

SECTION B

This is a question to revise understanding carried out in lesson.

You should aim to spend **10 minutes** answering this section.

1. The relative formula mass (M_1) of a compound is the the numbers shown in the formula. 1.1 H ₂	sum of the relative atomic masses of the atoms in
	[1 mark]
1.2 CO ₂	[1 mark]
1.3 H₂O	[1 mark]
1.4 NH ₃	[1 mark]
1.5 CH ₄	[1 mark]
1.6 NaOH	[1 mark]

1.7 H ₂ SO ₄	
	[1 mark]
1.8 Na ₂ CO ₃	
	[1 mark]
1.9 Mg (NO ₃) ₂ .	
	[1 mark]

SECTION C

This is a revision question to consolidate your understanding.

You should aim to spend 10 minutes answering this section.

	1. Describe how you can calculate the relative formula mass of a compound.
[4 Marks	

FEEDBACK SH	1EE I								
Overall Mark:		/23			G	RADE A	(CHIE	/ED:	
riai Ki					5			1 <u></u>	
Section A: Mark		/10			4			U \square	
Section B: Mark		/9			3				
Section C: Mark		/4							
Knowledg and understandi shown Strengths	ing	☐ Quality ☐ Working	nowledgo of Writte Scienting Exantial Skills	nination Questi	tion	☐ Mat	lication themati	•	
Areas to Improve:	1	 □ Basic Knowledge of Concepts □ Quality of Written Communication □ Working Scientifically □ Answering Examination Questions □ Analytical Skills □ Previous Topics □ Problem Solving Others (Topic Specific)							
Progress:		Unsatisfa	actory	Satisfactory	G	ood		Outstanding	
Working:	!	Belo		In line with		oove		(your target)	
Effort:		Poo		Inconsistent	G	ood		Excellent	
A IMPRAVA TI	i PT ID	or vall had	M TA!						

☐ Carry out independent revision.	☐ Revise the equations.
☐ Complete outstanding work.	$\hfill \Box$ Check the units on answers.
$\hfill \square$ Make corrections as indicated by the teacher.	$\hfill \Box$ Check the correct amount of sig figs on answers.
☐ Attend intervention for this topic	☐ Check to convert values correctly.
☐ Include more information in responses.	☐ Show your full working out.
☐ Include more key words in responses.	☐ Check your calculations.
☐ Attend departmental revision sessions.	☐ Revise the science investigative skills.
□ Read the questions carefully.	☐ Revise the key concepts of the topics.
☐ Explain your answers in more detail.	☐ Thoroughly check your work for mistakes.
☐ Carry out revision on Seneca Learning.	Other:
· ·	

Student response

TASK 3: CONCENTRATION

SPEC CHECK

Content	Achieved?
Many chemical reactions take place in solutions. The concentration of a solution can be measured in mass per given volume of solution, e.g. grams per dm³ (g/dm³). Students should be able to: • Calculate the mass of solute in a given volume of solution of known concentration in terms of mass per given volume of solution	

Target Setting In this assessed piece of work, what target should I look to achieve in completing this task? Ilease refer to your marking feedback for your target.	

sics.

From your previous work, fill in the following boxes with your personal progress in Phy					
What Topics Do I Need to Revise?					

HHH

SECTION A

This is a revision question on a previous topic.

You should aim to spend **10 minutes** answering this section.

- 1. This question is about carbon and gases in the air.
- **1.1** Carbon atoms have protons, neutrons and electrons.

Complete the table by writing the relative mass of a neutron and an electron.

[2 Marks]

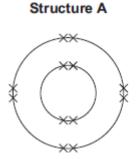
Name of particle	Relative mass
proton	1
neutron	
electron	

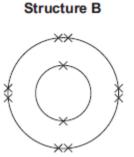
1.2 What is the total number of protons and neutrons in an atom called?

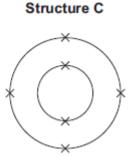
[1 Mark]

Tick (✓) one box.

The atomic number


The mass number


One mole of the atom


1.3 An atom of carbon has six electrons.

Which structure, A, B or C, represents the electronic structure of the carbon atom?

[1 Mark]

The carbon atom is structure

Carbon reacts with oxygen to produce carbon dioxide (CO₂).

1.4 How many	different	elements	are in	one mol	ecule o	of carbon	dioxide?

[1 mark

1.5 What is the total number of atoms in one molecule of carbon dioxide?

		[1 mark]

Sometimes carbon reacts with oxygen to produce carbon monoxide (CO).

1.6 Calculate the relative formula mass (M_r) of carbon monoxide.

Relative atomic masses (A_r): C = 12; O = 16

[

 M_r of carbon monoxide = _____

[1 mark]

1.7 Calculate the percentage by mass of car	bon in carbon monoxide.	
	[1	mark]
	Percentage by mass of carbon in carbon monoxide =	······································

HHH

SECTION B

This is a question to revise understanding carried out in lesson.

You should aim to spend **10 minutes** answering this section.

1. Firework rockets contain fuel and potassium nitrate.

The potassium nitrate provides oxygen for the fuel to react.

The table shows how a student worked out the relative formula mass (M_r) of potassium nitrate.

Some of the numbers are missing.

Relative atomic masses (A_r): N = 14; O = 16; K = 39.

Name of atom (symbol)	Numb er of atoms	A r	Mass
potassium (K)	1	39	39
nitrogen (N)	1	14	14
oxygen (O)		16	
The M	101		

1.1 The mass of oxygen is not shown in the table.

Draw a ring around the correct mass of oxygen.

[1 Mark]

16

32

48

1.2 Draw a ring around the number of oxygen atoms in the formula of potassium nitrate.

[1 Mark]

1

2

3

1.3 When the fuel reacts with the oxygen an <i>exothermic</i> reaction takes place	L.3	When	the	fuel	reacts	with	the	oxygen	an	exothermic	reaction	takes	place
---	------------	------	-----	------	--------	------	-----	--------	----	------------	----------	-------	-------

What does exothermic mean?				
What does execute mean.	[2 Marks]			
1.4 The fuel contains carbon. Carbon reacts with oxygen to make carbon dioxide.				
Which two statements in the table explain why carbon dioxide is a gas at room temperature?				
Tick the two statements.				

[2 Marks]

Statement	Tick (√)
It has a giant structure	
It has a low boiling point.	
It is made of small molecules.	
It is made of ions.	

SECTION C

_	-	-			-				-
Ιh	110	ıc	a revision	allection i	to con	colidate	VALIF	understand	ına
			a i cvision	question	to com	Jonate	your	unacistana	g.

You should aim to spend 10 minutes answering this section.

1. A student made two solutions – solution **A** and solution **B**.

Solution **A** contained 5 g of copper sulfate in 50 cm³ of water.

Solution **B** contains 10 g of copper sulfate in 100 cm³ of water.

The student added solution **B** to solution **A**.

Is the student correct? Explain your answer.

The student concluded that the new solution is more concentrated because it has more copper sulfate dissolved in it.

[5 marks]

FEEDBACK SHEET

LLD DACK SI	LEDBACK SITELT							
Overall Mark:		/17			(GRADE A	CHIEV	/ED:
			ı			5 🗌		1 🗌
Section A: Mark		/8	/8		4	1 <u> </u>		U \square
Section B: Mark		/6			3			
Section C: Mark		/3	ı.			2 🗀		
				T	1			Г
Knowledge and understandi shown		Unsatisfa	actory	Satisfactory	,	Good	d	Outstanding
Strengths: ☐ Basic Knowledge of Concept ☐ Quality of Written Communic ☐ Working Scientifically ☐ Answering Examination Que ☐ Analytical Skills Others (Topic Specific)						□ Mat	hemati erimen vious T	•
Areas to Improve:		□ Quality□ Working	of Writte Scienting Scienting Skills	nination Questi		□ Mat	:hemati erimen vious T	•
Progress:	!	Unsatisfa	actory	Satisfactory		Good		Outstanding
Working:		Belo		In line with		Above		(your target)
Effort:		Poo	r	Inconsistent		Good Excellent		Excellent
To improve fu	ırth	er you nee	ed to:					
 □ Carry out independent revision. □ Complete outstanding work. □ Make corrections as indicated by the teacher. □ Attend intervention for this topic □ Include more information in responses. □ Include more key words in responses. 					 □ Revise the equations. □ Check the units on answers. □ Check the correct amount of sig figs on answers. □ Check to convert values correctly. □ Show your full working out. 			
☐ Attend depa☐ Read the qu☐ Explain your	rtme estic	ental revisions carefull	n sessic y.	ons.	 □ Check your calculations. □ Revise the science investigative skills. □ Revise the key concepts of the topics. □ Thoroughly check your work for mistakes. 			

Other:

Student response

☐ Carry out revision on Seneca Learning.

TASK 4: TITRATIONS

SPEC CHECK

Content	Achieved?
The volumes of acid and alkali solutions that react with each other can be measured by titration using a suitable indicator. Students should be able to: • describe how to carry out titrations using strong acids and strong alkalis only (sulfuric, hydrochloric and nitric acids only) to find the reacting volumes accurately.	

Target Setting In this assessed piece of work, what ta Please refer to your marking feedback		uld I look to achieve in completing this t target.	ask?
From your previous work, fill in the foll	lowing bo	exes with your personal progress in Phys	ics.
What Topics Do I Know Well?		What Topics Do I Need to Revise?	

HHR

SECTION A

This is a revision question on a previous topic.

You should aim to spend **10 minutes** answering this section.

1. Some pollutants cause acid rain.

A student tested 25.0 cm³ samples of three types of rainwater, **P**, **Q** and **R**. The student titrated the samples with sodium hydroxide solution (an alkali).

1.1 The student calculated the mean value for rainwater **R** as 19.0 cm³.

The student recorded the volume of sodium hydroxide solution needed to neutralise the rainwater. The student's results are shown in **Table 1**.

Table 1

	Volume of sodium hydroxide needed to neutralise the rainwater in cm ³						
Type of rainwater	Titration 1	Titration 2	Titration 3	Titration 4	Titration 5		
P	18.0	15.5	14.5	15.0	15.0		
Q	13.0	10.0	11.0	10.5	10.5		
R	23.0	19.5	18.5	19.0	19.0		

Show how the student calculated the mean value for rainwater R.

[2 marks]

1.2 Write down P, Q and R in order of their acidity.

[2 Marks]

Most acidic _______

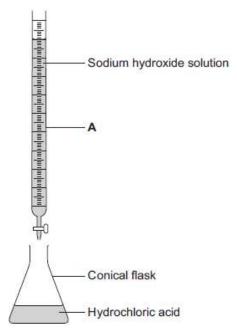
Least acidic ______

A second student repeated the experiment and recorded the results in **Table 2**.

Table 2

	needed to neutralise the rainwater in cm ³					
Type of rainwater	Titration 1	Titration 2				
P	17	15				
Q	11	9				
R	20	18				

nore accurate results.					
[2	2 marks]				
1.4 The results of the two students show that the experiment is reproducible.					
Give the reason why.					
	[1 Mark]				



SECTION B

This is a question to revise understanding carried out in lesson.

You should aim to spend **10 minutes** answering this section.

1. A student used the apparatus in the figure below to do a titration.

1.1 What is the name of the piece of apparatus labelled A?

Draw a ring around the correct answer.

[1 Mark]

burette measuring cylinder test tube

1.2 What should the student add to the acid in the conical flask?

Draw a ring around the correct answer.

[1 Mark]

catalyst indicator water

1.3 What would the student see when the end point of the titration has been reached?

[1 Mark]

The student does the titration three times.

1.4 State one variable that the student needs to keep the same to make it a fair test.	
[1]	Mark]

1.5 The student's results are shown in the table below.

Titration	Volume of sodium hydroxide solution added in cm ³
1	22.40
2	22.20
3	22.30

Calculate the mean volume of sodium hydroxide solution ad	ded.	
		[1 Mark]
	Volume =	cm³

SECTION C

This is a revision question to consolidate your understanding.

You should aim to spend **10 minutes** answering this section.

1. A student investigated the volume of sulfuric acid that reacted with 25 cm³ sodium hydroxide. Describe a titration method the student could use in this investigation.

[6]	marks]

FEEDBACK SHEET

Overall Mark:	/18					GRADE A	CHIE	VED:
Mai K.		,]		5	5		1 🗌
			1			. —		
Section A: Mark		/7			4	· 🗀		U
Section B:		/5			3	3		
Mark Section C:					2	2		
Mark		/6						
Knowledge	e							
and understandi shown		Unsatisfa	actory	Satisfactor	у	Good	d	Outstanding
Strengths	Strengths: □ Basic Knowledge of Concepts □ Quality of Written Communication □ Working Scientifically □ Answering Examination Questions □ Analytical Skills □ Previous Topics □ Problem Solving Others (Topic Specific)				ical Skills Ital Technique Topics			
Improve: ☐ Qua ☐ Wor ☐ Ans ☐ Ana		□ Quality□ Working	of Writte Scienting Ng Exan al Skills	nination Quest	ation	□ Mat	hemati erimen vious T	-
Progress:	!	Unsatisfa	actory	Satisfactory	(Good		Outstanding
Working:		Belo	W	In line with	Δ	bove		(your target)
Effort:		Poo		Inconsistent	(Good		Excellent
To improve fu	ırth	er you nee	ed to:					
☐ Carry out independent revision. ☐ Complete outstanding work.			□ Revise the equations.□ Check the units on answers.					
☐ Make corrections as indicated by the teacher.			☐ Check the correct amount of sig figs on answers.					
☐ Attend intervention for this topic				☐ Check to convert values correctly.				
☐ Include more information in responses.					•		rking out.	
☐ Include more key words in responses.					eck your			
☐ Attend departmental revision sessions.			ons.	□ Revise the science investigative skills.				
☐ Read the questions carefully.					☐ Revise the key concepts of the topics.			
☐ Explain your answers in more detail.				☐ Thoroughly check your work for mistakes.				
☐ Carry out revision on Seneca Learning.				Other:				

Student response

TASK 5: PERCENTAGE YIELD

SPEC CHECK

Content	Achieved?
Even though no atoms are gained or lost in a chemical reaction, it is not always	
possible to obtain the calculated amount of a product because:	
The reaction may not go to completion because it is reversible	
• Some of the product may be lost when it is separated from the reaction	
mixture	
• Some of the reactants may react in ways different to the expected reaction.	
The amount of a product obtained is known as the yield. When compared with	
the maximum theoretical amount as a percentage, it is called the percentage	
yield.	
% Yield = Mass of product actually made Maximum theoretical mass of product × 100	
Maximum theoretical mass of product	
Students should be able to:	
• Calculate the percentage yield of a product from the actual yield of a reaction	
The atom economy (atom utilisation) is a measure of the amount of starting	
materials that end up as useful products. It is important for sustainable	
development and for economic reasons to use reactions with high atom	
economy.	
The percentage atom economy of a reaction is calculated using the balanced	
equation for the reaction as follows:	
Relative formula mass of desired product from equation Sum of relative formula masses of all reactants from equation × 100	
Students should be able to:	
• Calculate the atom economy of a reaction to form a desired product from the	
balanced equation	
•	

Target Setting

In this assessed piece of work, what target should I look to achieve in completing this task? Please refer to your marking feedback for your target.

From your previous work, fill in the following boxes with your personal progress in Physics.

14/1 . T . D T.// 14/ 110					
What Topics Do I Know Well?					
•					

What Topics Do I Need to Revise?	

SECTION A

This is a revision question on a previous topic.

You should aim to spend 10 minutes answering this section.

Tod Should diff to speria 20 minutes answering this section.
1. Ethanol is made in a reversible reaction form ethene and water.
The equation is $C_2H_4 + H_2O \rightleftharpoons C_2H_5OH$
1.1 Which statement correctly describes the yield?
Tick one box only.
[1 Marl
A mass of ethanol and water
B mass of ethanol made
C mass of ethene reacted
D mass of reactants and products
A student calculated that the maximum theoretical mass of ethanol made in the reaction would be 90 g.
In the practical the student actually made 60 g of ethanol.
1.2 Calculate the percentage yield.
Give your answer to 2 significant figures.
Use the equation
percentage yield = $\frac{\text{mass of product actually made}}{\text{maximum theoretical mass of product}} \times 100$
[3 marks

[1 Mark]

1.3 Suggest **one** reason why the mass collected was less than expected.

Tick **one** box only.

A ethanol is a liquid

B ethene is too reactive

C reversible reaction

SECTION B

This is a question to revise understanding carried out in lesson.

You should aim to spend **10 minutes** answering this section.

1. Aspirin, C₉H₈O₄, is a common painkiller.

Pharmaceutical companies make aspirin by reacting salicylic acid, $C_7H_6O_3$, with one of two chemicals: salicylic acid can be reacted with ethanoyl chloride, C_2H_3OCl

$$C_7H_6O_3 + C_2H_3OCI \rightarrow C_9H_8O_4 + HCI$$

or salicylic acid can be reacted with ethanoic anhydride, C₄H₆O₃

$$C_7H_6O_3 + C_4H_6O_3 \rightarrow C_9H_8O_4 + C_2H_4O_2$$

Look at the table of relative formula masses:

Substance	Relative formula mass, <i>M</i> _r
C ₇ H ₆ O ₃	138
C₂H₃OCl	78.5
C ₄ H ₆ O ₃	102
HCI	36.5
C ₂ H ₄ O ₂	60
C ₉ H ₈ O ₄	180

Calculate the atom economy of making aspirin

1.1 from salicyclic acid and ethanoyl chloride	
Γ	2 marks]
1.2 from salicyclic acid and ethanoic anhydride.	
	2 marks]

Relative atomic masses (A_r): C = 12; H = 1; O = 16

1.3 State which method of production has the higher atom economy.	
	[1 mark]

SECTION C

This is a revision question to consolidate your understanding.

You should aim to spend **10 minutes** answering this section.

1. Industrially ethanol can be produced by two different methods.

 $\textbf{Reaction 1:} \quad C_2H_4 \,+\, H_2O \rightarrow C_2H_5OH$

Reaction 2: $C_6H_{12}O_6 \rightarrow 2CO_2 + 2C_2H_5OH$	
1.1 Explain why the atom economy in reaction 1 is equal to 100%.	
	[2 Marks]
1.2 Calculate the atom economy for reaction 2.	
Relative atomic masses A_r : C = 12, H = 1, O = 16	
	[5 Marks]

FEEDBACK SHEET

Overall Mark:		/17			GRADE ACHIEVED:						
		<u>-</u>			5	; <u> </u>		1 <u></u>			
Section A:	on A: /5				4	.		U \square			
Mark Section B:					3	3					
Mark		/5									
Section C: Mark		/7			2	<u> </u>					
Knowledge and understanding shown		Unsatisfactory		Satisfactory	y Good		d	Outstanding			
Strengths		 □ Basic Knowledge of Concepts □ Quality of Written Communication □ Working Scientifically □ Answering Examination Questions □ Analytical Skills □ Previous Topics □ Problem Solving Others (Topic Specific)									
Areas to Improve:		□ Basic Knowledge of Concepts □ Applications of Concepts □ Quality of Written Communication □ Mathematical Skills □ Working Scientifically □ Experimental Technique □ Answering Examination Questions □ Previous Topics □ Analytical Skills □ Problem Solving Others (Topic Specific)									
Progress:		Unsatisfa	actory	ctory Satisfactory		Good		Outstanding			
Working:		Belo	W	In line with	Α	bove		(your target)			
Effort:	_	Poor		Inconsistent	(Good		Excellent			
To improve fu	ırthe	er you nee	ed to:								
□ Carry out independent revision.□ Complete outstanding work.						□ Revise the equations.□ Check the units on answers.					
☐ Make corrections as indicated by the teacher.						$\hfill\Box$ Check the correct amount of sig figs on answers.					
☐ Attend intervention for this topic						☐ Check to convert values correctly.					
☐ Include more information in responses.						☐ Show your full working out.					
☐ Include more key words in responses.						☐ Check your calculations.					
□ Attend departmental revision sessions.□ Read the questions carefully.						□ Revise the science investigative skills.□ Revise the key concepts of the topics.					
☐ Explain your				ı	☐ Thoroughly check your work for mistakes.						
☐ Carry out re				Other:							

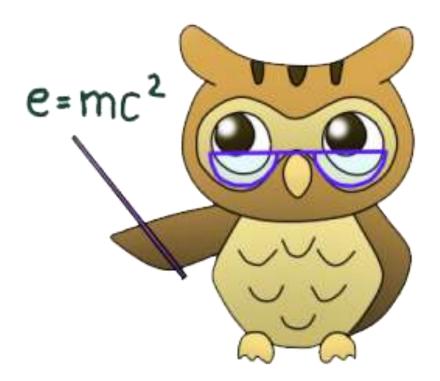
Student response

The Periodic Table of Elements

				-		re		T
0	He hellum	Ne neon	A Ar	2 2 Z	krypton 36	131 Xe xenon 54	[222] Rn radon 86	(294) Og oganesson 118
7		Huoning	35.5 CI chorine	80 B	bromine 35	127 	At At astatine 85	[293] Ts tennessine 117
9		16 0 0 0 0 0 0	32 S S S	79 Se	selenium 34	128 Te tellurium 52	Po Polonium 84	[293] Lv livemorium 116
2		N nitrogen	31 Phosphorus	75 As	arsenic 33	Sb antimony 51	209 Bi bismuth 83	[289] Mc moscovium 115
4		Carron	73	- 1	_	is .	207 Pb lead 82	
က		Daran para	27 AI All	_			Z04 TI thallium 81	
				65 Zn	30	Cd Cd cadmium 48	Hg mercury 80	[285] Cn copernicium 112
				63.5 Cu	copper 29	Ag silver 47	197 Au gold 79	Rg roentgenium
				29 Z	nickel 28	106 Pd palladium 46	195 Pt platnum 78	_ E
				29	cobalt 27	Rh modium 45	192 Ir indium 77	[278] Mt meitnerium 109
	H hydrogen			56 Fe	iron 26	Ru ruthenium 44	190 Os osmium 76	Sees w 1
				55 Mn	n manganese 25	[97] Tc	186 Re rhenium 75	[270] Bh bohrium 107
		mass	number	52 Cr	200	96 Mo molybdenum 42	184 W tungsten 74	Sg seaborgium 106
	Key	relative atomic mass atomic symbol	atomic (proton) number	5 >	vanadium 23	Nb nioblum 41	Ta Ta tantalum 73	[270] Db dubnium 105
		relativ	atomic	48 T	thanium 22	2r Zr zirconium 40	178 Hf hafinium 72	[267] Rf nutherfordium 104
				45 Sc	scandium 21	89 ≻	139 La* lanthanum 57	[227] Ac* actinium 89
2	2	9 Be beryllium	24 Mg	0 P	calcium 20	Sr Sr strontium 38	137 Ba barhum 56	[226] Ra radium 88
-	1	7 Li lithium	Na sodium	9	potassium 19	Rb nubidium 37	133 Cs caesium 55	[223] Fr francium 87
		THE STATE OF THE S	- S		pote	5	- 0 88	<u>5</u>
	1		-2.5	55		V		

* The Lanthanides (atomic numbers 58 – 71) and the Actinides (atomic numbers 90 – 103) have been omitted.

Relative atomic masses for Cu and CI have not been rounded to the nearest whole number.


Acknowledgements

This document has been produced by Mr J Turnbull.

All relevant information has been credited in the document.

This document has been produced for educational purposes only.

This document has been produced for the AQA GCSE Science Specification.

