

ST MARY'S SCIENCE DEPARTMENT: CHEMISTRY

GCSE CHEMISTRY **HOMEWORK BOOK TOPIC 2:** CHEMICAL REACTIONS STUDENT BOOK

YOU MUST ANSWER ALL THREE SECTIONS IN EACH PART OF THE HOMEWORK TASKS

NAME	
CLASS	
TEACHER	
FORM	

TASK	MARK	GRADE
1		
2		
OVERALL		

GCSE
CHEMISTRY
YEAR 11
TOPIC 1

HOMEWORK SCHEDULE

Please use the following table to ensure each homework task is completed and submitted on time.

Carrying out these homework tasks can only increase your ability to gain a high grade in the GCSE examinations.

Failure to hand in work on time will lead to sanctions to complete this work.

Task	Submission Date	Completed?	On Time?
Task 1 Reversible Reactions			
Task 2 Le Chatelier			

SCIENCE DEPARTMENT MARKING CODE

ID = Insufficient detail in answer

W = Wrong understanding of science

IR = Irrelevant information given.

V = This is too vague to get a mark.

AQ = Answer the question asked

R = Read the question/information

M = Maths mistake

BOD = Benefit of the doubt given.

E = Explain the answer further please.

U = Wrong units used.

SF = Wrong significant figures used.

SP = Wrong spelling of a technical term

SR = Same reason given more than once.

A circle means this lost you marks

An underline means this gained you marks

PLEASE READ

This homework booklet has made with custom selected examination questions and activities to assess your understanding in the concepts covered in class. This will increase your familiarity with the style of examination questions.

Carrying out these questions can only increase your ability to gain a high grade in the GCSE examination.

Thank you for your hard work in completing this book, and good luck.

Mr. Turnbull

TASK 1: REVERSIBLE REACTIONS

SPEC CHECK

Content	Achieved?
In some chemical reactions, the products of the reaction can react to produce the original reactants. Such reactions are called reversible reactions and are represented:	
$A + B \rightleftharpoons C + D$	
The direction of reversible reactions can be changed by changing the conditions.	
ammonium chloride	
If a reversible reaction is exothermic in one direction, it is endothermic in the opposite direction. The same amount of energy is transferred in each case.	
hydrated copper sulfate (blue) endothermic copper sulfate (white) anhydrous copper sulfate (white)	
When a reversible reaction occurs in apparatus which prevents the escape of reactants and products, equilibrium is reached when the forward and reverse reactions occur at exactly the same rate.	

Target Setting

In this assessed piece of work, what target should I look to achieve in completing this task? Please refer to your marking feedback for your target.

From your previous work, fill in the following boxes with your personal progress in Physics.

What Topics Do I Know Well?		

What Topic Revise?	s Do I	Need to	D	

SECTION A

This is a revision question on a previous topic.

You should aim to spend **10 minutes** answering this section.

- **1.** A 1 kg mass is made from a platinum and iridium alloy.
- 1 1 The platinum and iridium allow is harder than nurs platinum

Explain why alloys are harder than the pure metal.			
		[3 marks]	
1 7 The 1 kilogra		diama	
_	n mass consisted of 900 g platinum and 100 g irion of platinum atoms to iridium atoms in the alloy?		
	asses (A _r): Pt = 195 Ir = 192		
		[1 mark]	
Tick one box.			
0.99:1.00			
8.86 :1.00			
9.00 :1.00			

9.14:1.00

The Avogadro constant is the number of atoms in 1 mole of a substance.

1.3 What is the value of the Avogadro constant?

[1 mark]

lick one box.	
6.02 × 10 ²³ per mole	
6.02 × 10 ²⁴ per mole	
6.02 × 10 ²⁵ per mole	

1.4 Scientists could use a sample of silicon to define the Avogadro constant.

Copper is an impurity in the silicon sample.

There are 70 nanograms of copper in 1 g of the sample.

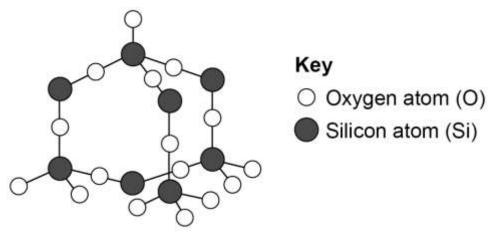
Calculate the mass of copper in grams in 1 kg of the sample.

Give your answer in standard form.

 6.02×10^{26} per mole

1	nanogram	=	10-9	g

narks]


Mass of Copper =.....g

Silicon mainly occurs in the Earth's crust as silicon dioxide.

Figure 8 represents part of the structure of silicon dioxide.

Figure 8

SECTION B

This is a question to revise understanding carried out in lesson.

You should aim to spend **10 minutes** answering this section.

1. Hydrated copper(II) sulfate is a blue solid. When it is heated, water is given off as steam and the crystals turn white. The reaction is reversible.

Describe an experiment to investigate this chemical change. You should outline the method you would use,

name any apparatus required, and describe two pieces of evidence that the reaction is reversible.

[6 marks]

SECTION C

This is a	a challenge	auestion	to extend	vour und	derstanding
	- cacg.	. 94656.	to chitchia	,	

You should aim to spend **10 minutes** answering this section.

1. A company manufactures ethanol (C₂H₅OH).
The reaction for the process is:
$C_2H_4(g) + H_2O(g)$ \longrightarrow $C_2H_5OH(g)$ $\Delta H = -45$ kJ per mole
The temperature and pressure can be changed to increase the yield of ethanol at equilibrium.
1.1 Explain what is meant by equilibrium.
1.2 How would increasing the temperature change the yield of ethanol at equilibrium?
Give a reason for your answer.

1.3 How would increasing the pressure change the yield of ethanol at equilibrium?	
Give a reason for your answer.	
	[2 marks]
1.4 A catalyst is added to increase the rate of the reaction.	
Explain how adding a catalyst increases the rate of a chemical reaction.	
	[2 marks]

FEEDBACK SHEET

ELDBACK SI	<u>ILL I</u>								
Overall Mark:		/26			G	RADE AC	HIEVE	D:	
			I		9			5	
Section A: Mark		/11			8			4	
Section B: Mark		/6			7 6			3 <u> </u>	
Section C: Mark		/9							
Knowledge and understandi shown		Unsatisfa	actory	Satisfactory	/	Good	d	Outstanding	
Strengths	:	□ Quality□ Working	of Writte Scientiing Scientiing Skills	nination Quest		□ Mat □ Exp	hemati erimen vious T	•	
Areas to Improve:		☐ Quality☐ Working	of Writte Scientiing Scientiing Skills	nination Quest		□ Mat □ Exp	hemati erimen vious T	-	
Progress:		Unsatisfa	actory	Satisfactory		Good		Outstanding	
Working:		Belo	W	In line with		Above		(your target)	
Effort:		Poo	r	Inconsistent		Good		Excellent	
Γο improve fu	ırth	er you nee	ed to:				_		_
☐ Carry out in ☐ Complete ou☐ Make correction	nding work	, 	er			ınits or	ons. n answers. ount of sig figs on answers.		

☐ Carry out independent revision.	☐ Revise the equations.
☐ Complete outstanding work.	☐ Check the units on answers.
$\hfill \square$ Make corrections as indicated by the teacher.	$\hfill \Box$ Check the correct amount of sig figs on answers.
☐ Attend intervention for this topic	☐ Check to convert values correctly.
☐ Include more information in responses.	☐ Show your full working out.
☐ Include more key words in responses.	☐ Check your calculations.
☐ Attend departmental revision sessions.	☐ Revise the science investigative skills.
☐ Read the questions carefully.	☐ Revise the key concepts of the topics.
☐ Explain your answers in more detail.	☐ Thoroughly check your work for mistakes.
☐ Carry out revision on Seneca Learning.	Other:

Student response

TASK 2: LE CHATELIER

SPEC CHECK

Content	Achieved?
(HT Only) The relative amounts of all the reactants and products at equilibrium depend on the conditions of the reaction.	
If a system is at equilibrium and a change is made to any of the conditions, then the system responds to counteract the change. The effects of changing conditions on a system at equilibrium can be predicted	
using Le Chatelier's Principle. Students should be able to make qualitative predictions about the effect of changes	
on systems at equilibrium when given appropriate information.	
(HT Only) If the concentration of one of the reactants or products is changed, the system is no longer at equilibrium and the concentrations of all the substances will change until equilibrium is reached again. If the concentration of a reactant is increased, more products will be formed until	
equilibrium is reached again. If the concentration of a reactant is increased, more products will be formed until equilibrium is reached again.	
equilibrium is reached again. Students should be able to interpret appropriate given data to predict the effect of a change in concentration of a reactant or product on given reactions at equilibrium.	
(HT Only)If the temperature of a system at equilibrium is increased:• the relative amount of products at equilibrium increases for an endothermic reaction	
the relative amount of products at equilibrium decreases for an exothermic reaction.	
If the temperature of a system at equilibrium is decreased: • the relative amount of products at equilibrium decreases for an endothermic reaction	
• the relative amount of products at equilibrium increases for an exothermic reaction.	
Students should be able to interpret appropriate given data to predict the effect of a change in temperature on given reactions at equilibrium.	
(HT Only) For gaseous reactions at equilibrium:	
• an increase in pressure causes the equilibrium position to shift towards the side with the smaller number of molecules as shown by the symbol equation for that reaction	
• a decrease in pressure causes the equilibrium position to shift towards the side with the larger number of molecules as shown by the symbol equation for that reaction.	
Students should be able to interpret appropriate given data to predict the effect of pressure changes on given reactions at equilibrium.	

Target Setting

In this assessed piece of work, what target should I look to achieve in completing this task? Please refer to your marking feedback for your target.

From your previous work, fill in the following boxes with your personal progress in Physics.

What Topics Do I Know Well?

What Topics Do I Need to Revise?

SECTION A

This is a revision question on a previous topic.

You should aim to spend **10 minutes** answering this section.

The equatio	n for the rea	ction is	:					
	CuO(s)	+	H ₂ SO ₄ (aq)	\rightarrow	CuSO ₄ (aq)	+	H ₂ O(I)	
1.1 Why is	it necessary t	to add (excess copper o	xide?				
								[1 mark]
	the method u							
1. Add 25 c	m³ of dilute s	ulfuric	acid to a conical	flask.				
2. Gently w	arm the dilut	e sulfur	ic acid.					
3. Add exce	ess copper ox	ide to t	he dilute sulfurio	c acid.				
4. Stir the n	nixture.							
5. Heat to e	evaporate all	the wat	er from the mix	ture.				
Suggest tw	o improveme	ents to t	the method.					
Explain why	each improv	ement	is needed.					
								[4 marks]
Improvemen	nt 1							
Improveme	nt 2							

1. A student planned to make copper sulfate crystals from excess copper oxide and dilute sulfuric acid.

1.3 The student used:

- 2 g of copper oxide (in excess)
- 25 cm³ of a solution of dilute sulfuric acid with a concentration of 49 g/dm³

Determine by how many moles the copper oxide (CuO) was in excess.

Relative atomic masses (A_r): Cu = 63.5 O = 16

Relative formula mass (M_r) of sulfuric acid = 98

[5 marks]

Number of Moles in Excess =

SECTION B

This	is a	a q	uestion	to	revise	unc	lerstand	ling	carried	out	in	lesson.

You should aim to spend 10 minutes answering this section.

Tou should aim to s	spena to minac	cs allow	ciling tills sect	LIOII.			
1. The Contact proce	ess is an industrial	method	for making sulf	furic a	cid from sulfu	r, oxygen, and water.	
One important reaction	on in the Contact p	orocess is	5:				
	2SO ₂ (g)	+	O ₂ (g)	\rightleftharpoons	2SO ₃ (g)	l	
	sulfur dioxide		oxygen		sulfur trioxid	e	
The reaction is exoth	ermic in the forwa	rds direc	tion.				
1.1 State the meaning	ng of the symbol =	≥.					
						[1 mark	(]
1.2 Describe and ex	plain the effect of	increasin	g pressure on t	the an	nount of sulfu	r trioxide at equilibrium	۱.
						[2 marks	;]
The reaction is carrie	•						
1.3 Describe and experience of the contract of the contrac		raising th	ne temperature	above	e 450 °C on th	e amount of sulfur	
						[2 marks	;]
							••••
							• • • •

A vanadium pentoxide catalyst is used.

1.4 Explain how the use of a catalyst increases the rate of the reaction.	
	[2 marks]

SECTION C

This is a challenge question to extend your understanding.

You should aim to spend **10 minutes** answering this section.

- **1.** This question is about hydrocarbons
- **1.1** Explain why the hydrocarbon C_7H_{16} has a lower boiling point than $C_{10}H_{22}$

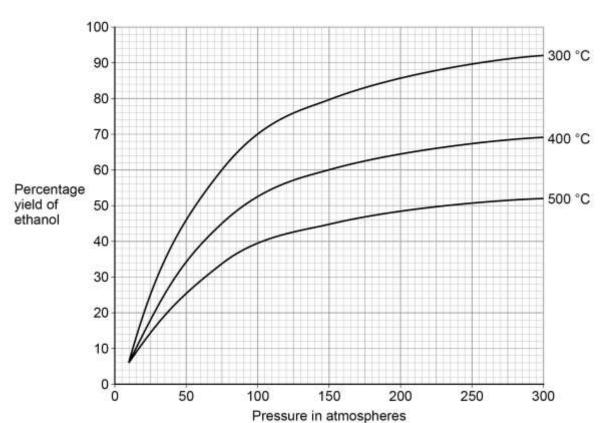
[2	marks]

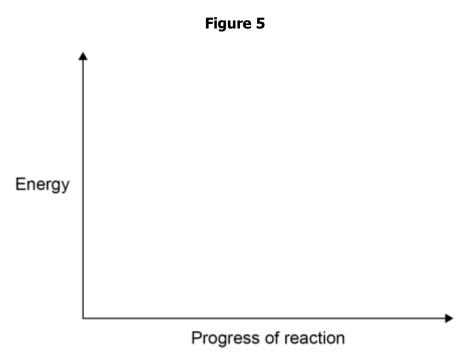
Ethanol is produced by reacting ethene with steam.

The equation for the reaction is:

$$C_2H_4(g) + H_2O(g) \rightleftharpoons C_2H_5OH(g)$$

Figure 4 shows the percentage yield of ethanol using different reaction conditions.




Figure 4

	ว E	مندام	14.h1	changing	+6~	PROCELIKO	affacta the	percentage	viold o	fathanal
	4 F	เบเลเบ	WHIV	Chanding	1110	DIESSITE	aned Sine	nercentade	vieia o	i emanoi.
_		vp.u.i	,	Ci idi igii ig		pi cooai c	arreces are	PCICCIICAGC	,	. cailailoii

212 Explain Why changing the pressure affects the percentage yield of ethanoli	
	[3 marks]
The forward reaction is exothermic.	
1.3 How does Figure 4 provide evidence for this?	
	[1 mark]

1.4 Figure 5 shows part of a reaction profile diagram.

A catalyst is used in the reaction to produce ethanol.

Complete **Figure 5** to show how the catalyst increases the rate of this reaction.

You should label the reaction profile diagram.

[4 marks]

1.5 Suggest why the catalyst does not affect the yield of ethanol at equilibrium.	
	[2 marks]

FEEDBACK SHEET

ELDBACK SI	<u>ILLI</u>								
Overall Mark:		/29			GRADE ACHIEVED:				
					9			5	
Section A: Mark		/10			8			4 🗆	
Section B: Mark		/7			7			3	
Section C: Mark		/12			6			U 📙	
Knowledg and understand shown		Unsatisfa	actory	Satisfactory	y	Good	d	Outstanding	
Strengths:		 □ Basic Knowledge of Concepts □ Quality of Written Communication □ Working Scientifically □ Answering Examination Questions □ Analytical Skills □ Previous Topics □ Problem Solving Others (Topic Specific)							
Areas to Improve:		 □ Basic Knowledge of Concepts □ Quality of Written Communication □ Working Scientifically □ Answering Examination Questions □ Analytical Skills □ Previous Topics □ Problem Solving Others (Topic Specific)							
Progress:		Unsatisfactory		Satisfactory		Good	Outstanding		
Working:	:	Belo	W	In line with	,	Above		(your target)	
Effort:		Poo	r	Inconsistent		Good		Excellent	
<u>-</u>	o improve further you need to: □ Carry out independent revision. □ Revise the equations.								
Complete substanding words				Charlette autotameling annuals					

☐ Carry out independent revision.	☐ Revise the equations.
☐ Complete outstanding work.	☐ Check the units on answers.
$\hfill \square$ Make corrections as indicated by the teacher.	$\hfill \Box$ Check the correct amount of sig figs on answers.
☐ Attend intervention for this topic	☐ Check to convert values correctly.
☐ Include more information in responses.	☐ Show your full working out.
☐ Include more key words in responses.	☐ Check your calculations.
☐ Attend departmental revision sessions.	☐ Revise the science investigative skills.
☐ Read the questions carefully.	☐ Revise the key concepts of the topics.
☐ Explain your answers in more detail.	☐ Thoroughly check your work for mistakes.
☐ Carry out revision on Seneca Learning.	Other:

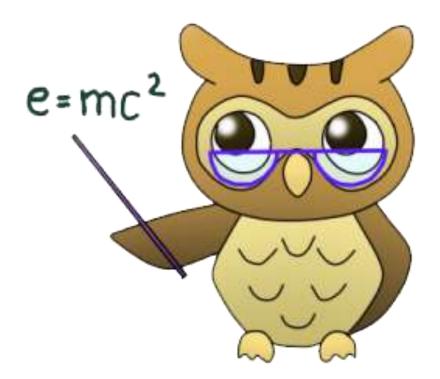
Student response

The Periodic Table of Elements

0	He helium 2	20 Ne	40 Ar angon 18	2 z	krypton 36	131 Xe xenon 54	Rn Rn radon 86	Og oganesson 118
7		19 F fluorine 9	35.5 CI cNorine 17	80 Br	bromine 35	127 	At At astatine 85	[293] Ts tennessine 117
9		16 0 0 0 0 8	32 S suffur 16	79 Se	selenium 34	128 Te tellurium 52	Po Polonium 84	[293] Lv Iivemorium 116
2		N nitrogen 7	31 P phosphorus 15	75 As	arsenic 33	122 Sb antimony 51	209 Bi bismuth 83	[289] Mc moscovium 115
4		Carbon 6					207 Pb lead 82	
က		5 B T	AI AI aluminium 13				204 TI thallium 81	
			0,000	65 Zn	30	112 Cd cadmium 48	201 Hg	[285] Cn copemicium 112
				63.5 Cu	copper 29	Ag silver 47	197 Au 906 79	Rg Rg roentgenium
				26 Z	28	106 Pd palladium 46	195 Pt platnum 78	_ E
				59 Co	cobalt 27	103 Rh modium 45	192 Ir indium 77	E
	H hydrogen			56 Fe	iron 26	101 Ru ruthenium 44	190 Os osmium 76	Name of the
		1		55 Mn	nanganese 25	-	186 Re rhenlum 75	[270] Bh bohrium 107
		mass nbol number		52 Cr	chromium r	96 Mo molybdenum 42	184 W tungsten 74	Sg seaborgium 106
	Key relative atomic mass atomic symbol name atomic (proton) number		51	vanadium 23	Nb nioblum 41	181 Ta tantalum 73	[270] Db dubnium s 105	
		relative ator		48 Ti	titanium 22	91 Zr zirconium 40	178 Hf hafnlum 72	[267] Rf nutherfordium 104
				45 Sc	scandium 21	89 ×ttrium 39	139 La* lanthanum 57	Ac* actinium n 89
2	B	9 Be beryllium 4	24 Mg magnesium 12	40 Ca	calcium 20	Sr Sr strontium 38	137 Ba barlum 56	[226] Ra radium 88
-		7 Li lithium 3	Na sodium	€ ×	potassium 19	85 Rb nubidium 37	Cs Cs caestum 55	[223] Fr francium 87

* The Lanthanides (atomic numbers 58 – 71) and the Actinides (atomic numbers 90 – 103) have been omitted.

Relative atomic masses for Cu and CI have not been rounded to the nearest whole number.


Acknowledgements

This document has been produced by Mr J Turnbull.

All relevant information has been credited in the document.

This document has been produced for educational purposes only.

This document has been produced for the AQA GCSE Science Specification.

