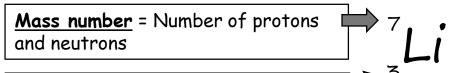

<u>Atoms</u>

- All substances are made of **<u>atoms</u>**.
- <u>Elements</u> are made of only one type of atom.
- <u>Compounds</u> contain more than one type of atom.
- Compounds are held together by **bonds**.
- <u>Mixtures</u> contain elements and compounds.

) Neutron Proton

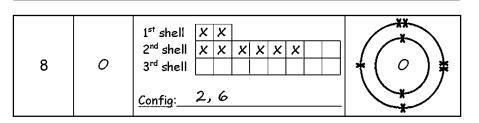
X Electron


Protons and Neutrons are found in the <u>nucleus</u>.

Electrons orbit the nucleus in <u>shells</u>.

	Proton	Neutron	Electron
Mass	1	1	negligible
Charge	+	0	-
Location	nucleus	nucleus	shells

Any atom contains <u>equal</u> numbers of protons and electrons.

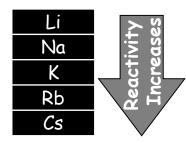

All atoms of a particular element have the same number of protons. Atoms of different elements have different numbers of protons.

Atomic number = Number of protons

Number of neutrons = Mass Number - Atomic Number

Electrons occupy particular energy levels. Each electron in an atom is at a particular energy level (in a particular shell). The electrons in an atom occupy the lowest available energy levels (innermost available shells).

- 1. In the nucleus of an atom there are protons and _____
- 2. Around the nucleus there are electrons in _____
- 3. What is the charge on a proton?
- 4. Atoms are always neutral, explain why?
- 5. How many protons, neutrons and electrons does Lithium have?
- 6. What is the atomic number and mass number of Oxygen?
- 7. What is the electron configuration of Oxygen?
- 8. Draw the electronic structure of Magnesium.
- 9. How many different types of atom are in an element?
- 10. How are compounds and elements different?


Atoms

Periodic Table and Bonding

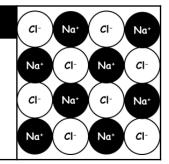
- Each element has its own symbol.
- Columns are called groups.
- Elements in a group have similar properties.
- Rows are called **periods**.
- The staircase splits metals from non-metals.

1	2											3	4	5	6	7	8
Н																	He
Li	Be											В	С	Ν	0	F	Ne
Na	Mg											Al	Si	Ρ	S	Cl	Ar
Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	У	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	?	?	?						

Elements in the same group in the periodic table have the same number of electrons in their highest energy level (outer electrons) and this gives them similar chemical properties.

Reactions involve the loss of the outermost electron. Losing this electron seems to get easier as we go down the group. Atoms of the last group (noble gases) have stable arrangements and are unreactive

2 types of bonding:


- Transferring electrons → IONIC BONDING
- Sharing electrons → COVALENT BONDING

Ionic Bonding

- Metal and non-metal react
- Metals form positive ions,
- Non-metals negative ions
- Opposite charges attract
- A giant lattice is formed

Covalent Bonding

- When 2 non-metals bond
- Outermost electrons are shared
- A pair of shared electrons forms a bond

- 1. Lithium and potassium are in which group of the periodic table?
- 2. Does the reactivity of this group increase or decrease as you go down the group?
- 3. Do periods go <u>across</u> or <u>down</u>?
- 4. Are non-metals on the left or right side of the periodic table?
- What are the group of elements called that site between group
 2 and 3 in the periodic table?
- 6. Which element is in period 2, group 6?
- 7. Which element is in period 4 group 3?
- 8. Why are noble gases unreactive?
- 9. Ionic bonds exist between 2 non-metals, true or false?
- 10. Explain your answer to question 9.

Periodic Table and Bonding

Chemical Equations

- Chemical equations show the <u>reactants</u> (what we start with) and the <u>products</u> (what we end with).
- No atoms are lost or made during a chemical reaction so the mass of the products equals the mass of the reactants.
- We often use symbol equations to make life easier

	 calcium oxide + carbon dioxide CaO + CO₂ 56g 44g
 <u>HT Only</u> Equations MUST balance We can ONLY add BIG numbers to the front of a substance We can tell elements within a compound by BIG letters We can check an equation is balanced by counting the number of each type on either side 	$\begin{array}{c c} H = 2 \\ O = 2 \end{array} & H_2 + O_2 \rightarrow H_2 O \\ \textbf{Unbalanced} \end{array} \begin{array}{c} H = 2 \\ O = 1 \end{array}$ $\begin{array}{c} H = 2 \\ O = 2 \end{array} & H_2 + O_2 \rightarrow 2H_2 O \\ \textbf{Unbalanced} \end{array} \begin{array}{c} H = 4 \\ O = 2 \end{array}$ $\begin{array}{c} H = 4 \\ O = 2 \end{array} & 2H_2 + O_2 \rightarrow 2H_2 O \\ Harmonian $

Assuming the thermal decomposition of copper carbonate

- 1. What are the reactants?
- 2. How many products?
- 3. What is the name of the solid product?
- 4. What is the name of the gaseous product
- 5. If I heated 5 tonnes of copper carbonate and got 3.5 tonnes of solid how much CO_2 will be given off?

Assuming the reaction: Mg (s) + 2HCl (aq) \rightarrow MgCl₂ (aq) + H₂ (g)

- 6. What are the names of the reactants?
- 7. What is the name of the gaseous product?
- 8. What does (aq) stand for?
- 9. Explain why the equation is balanced.
- 10. Describe a positive test for the gaseous product.

Chemical Equations

<u>Limestone and Carbonates – 1</u>

- Limestone is made mainly of Calcium Carbonate
- Calcium carbonate has the chemical formulae $CaCO_3$
- Some types of limestone (e.g. chalk) were formed from the remains of animals and plants that live millions of years ago

<u>Use in Building</u>

We use limestone in many buildings by cutting it into blocks.

Other ways limestone is used:

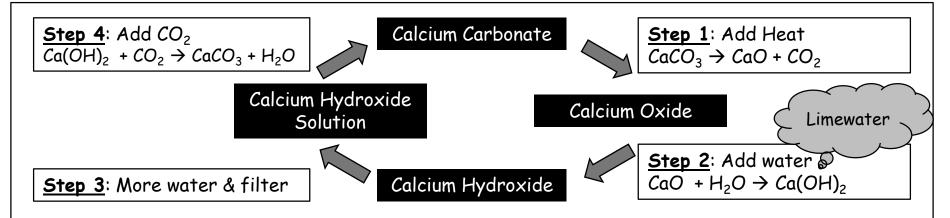
- **Cement** = powdered limestone + clay
- Concrete = Cement + Sand + Water
- Buildings made from limestone suffer from damage by acid rain
- This is because carbonates react with acid to form a salt, water and carbon dioxide

Calcium + Hydrochloric → Calcium + Water + Carbon Carbonate Acid Chloride Dioxide

 $CaCO_3$ + 2HCl \rightarrow $CaCl_2$ + H_2O + CO_2

<u>Heating limestone and carbonates</u> Breaking down a chemical by heating is called **thermal decomposition**.

Calcium Carbonate				Carbon Dioxide
CaCO ₃	\rightarrow	CaO	+	CO2

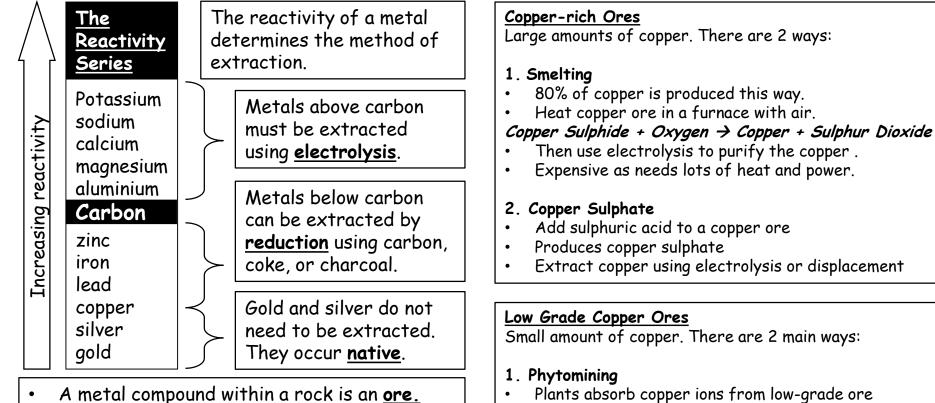

Testing for CO₂

- We use limewater to test for CO2
- Limewater turns cloudy
- A precipitate (tiny solid particles) of calcium carbonate forms causing the cloudiness!

- 1. Give 3 alternative names for $CaCO_3$
- 2. How many different types of atoms are there in $CaCO_3$
- 3. How many atoms in total are there in $CaCO_3$
- 4. Name 3 of the 4 substances found in concrete.
- 5. Which chemical do we use to test for the presence of CO_2 ?
- 6. What is considered a positive result for this test?
- 7. What is the chemical name for limewater?
- Cement is made by heating powered limestone and ______ in a kiln?
- 9. Why do buildings made from limestone in built-up industrial areas erode?
- 10. Breaking down a chemical by heating is called ____

Limestone and Carbonates – 1

Limestone and Carbonates - 2



 Limestone is used widely as a building material We can also use it to make other materials for the construction industry calcium carbonate + <u>heat</u> → calcium oxide + carbon dioxide calcium oxide + water → calcium hydroxide 	<u>Cement</u> Made by heating limestone with clay in a kiln <u>Mortar</u> Made by mixing cement and sand with water <u>Concrete</u> Made by mixing crushed rocks or stones (called aggregate), cement and sand with water
Benefits	Drawbacks
 Provide jobs Lead to improved roads Filled in to make fishing lakes or for planting trees Can be used as landfill sites when finished with 	 Destroys habitats Increased emissions Noisy & Dusty Dangerous areas for children Busier roads

- 1. What gas is released when carbonates are heated strongly?
- 2. What solid product is formed when zinc carbonate is heated?
- 3. What is the name of the product formed when calcium oxide (CaO) is reacted with water (H_2O) ?
- 4. What is the chemical formula of the solid formed when carbon dioxide (CO_2) is bubbled through calcium hydroxide $(Ca(OH)_2)$?
- 5. List 2 benefits of limestone quarrying.
- 6. List 2 drawbacks of limestone quarrying.
- 7. How can we separate calcium carbonate from water?
- 8. Why is the following reaction balanced: $CaCO_3 \rightarrow CaO + CO_2$?
- 9. What is the alternative name for calcium hydroxide?
- 10. List 1 social, environmental and economic consequence of busier roads caused by quarrying

Limestone and Carbonates – 2

Extracting Metals

- A metal compound within a rock is an <u>ore.</u>
 The metal is often combined with oxygen.
- Ores are mined and then purified.
- Iron Ore contains iron combined with oxygen
- A blast furnace and carbon to extract it.
- Carbon **REDUCES** the iron oxide:

Iron Oxide + Carbon \rightarrow Iron + Carbon Dioxide

2. Bioleaching

٠

•

٠

Plants are burned

- Bacteria feed on low-grade ore
- Produce a waste product that contains copper ions

Copper ions dissolved by adding H₂SO₄

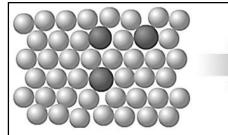
• Use displacement or electrolysis to extract pure Cu

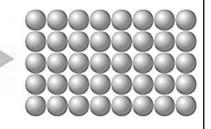
Use displacement or electrolysis to extract pure Cu

<u>The</u> Reactivity <u>Series</u>	
potassium	
sodium	
calcium	
magnesium	
aluminium	
Carbon	
zinc	
iron	
lead	
copper	
silver	
gold	

1.

- A metal compound within a rock is an _____
- 2. How do we extract metals above carbon?
- 3. Why does gold not need to be extracted?
- 4. Why do we use carbon to extract lead from lead sulphide as opposed to a more reactive metal such as sodium?
- 5. Complete the following reaction used in extraction:


copper oxide + carbon \rightarrow _____


- 6. Name one method of extracting low-grade copper ores.
- 7. Name one method of extracting copper-rich ores.
- 8. Inside what device is the smelting process performed?
- 9. Why electrolysis is expensive (2 reasons)?
- 10. Name the process for taking ores out of the ground.

Extracting Metals

Aluminium, Titanium and Alloys

Aluminium	Titanium
Shiny, Light, Low density, Conducts electricity and energy, Oxide layer on the surface prevents corrosion, Malleable - easily shaped, Ductile - made into cables or wires, Improve hardness by forming alloys. These alloys are stronger and rigid than pure Al.	Strong, Oxide layer on the surface prevents corrosion , High melting point - so can be used at high temperatures, Less dense than most metals
<u>Uses:</u> Drinks cans, cooking oil, saucepans, overhead cables, aeroplanes and bicycles.	<u>Uses:</u> Hip replacements, racing bikes, jet engines, parts of nuclear reactors.
 Aluminium ore is mined and extracted. Aluminium oxide (the ore) is melted Electric current passed through a high temperature Expensive process - need lots of heat and electricity 	 Use sodium or potassium to displace titanium from its ore Get sodium and magnesium from electrolysis Expensive - lots of steps involved, & needs lots of heat and electricity

A metal mixed with other elements is called an **ALLOY**. Alloys are harder than pure metals.

IRON ALLOYS Steel → Iron with carbon	COPPER ALLOYS
and/or other elements. Impurities make it brittle. There are a number of types of steel alloys: • Carbon steels • Low/High-alloy steels • Stainless steels	 Bronze (Copper + Tin) Tough Resistant to corrosion Brass (Copper + Zinc) Harder but workable
ALUMINIUM ALLOYS	GOLD ALLOYS
 Alloyed with a wide range of other elements All have very different properties E.g. in aircraft or armour plating! 	 Usually add Copper to make jewellery last longer

- 1. What prevents aluminium and titanium from corroding?
- 2. State 2 uses of aluminium.
- 3. State 2 uses of titanium.
- 4. Give 2 reasons why we choose to recycle aluminium
- 5. Why do we alloy aluminium with other metals?
- 6. What do we react with iron to produce steel
- 7. State 1 benefit of stainless steel over iron.
- 8. Why are alloys harder than pure metals?
- 9. Is brass a pure metal or an alloy?
- 10. Explain your answer to question 9.

Aluminium, Titanium and Alloys

Transition Metals + Issues

1	2											3	4	5	6	7	8
Н																	He
Li	Be											В	С	Ν	0	F	Ne
Na	Mg											Al	Si	Ρ	S	Cl	Ar
Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	У	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	?	?	?						

Transition Metals

Found in the central block of the periodic table

Properties:

- Good conductors of electricity and energy
- Strong
- Malleable easily bent into shape

Uses:

- Buildings
- Transport (cars, trains etc)
- Heating systems
- Electrical wiring

Example (Copper):

- Water pipes easily bent into shape, strong, doesn't react with water
- Wires ductile and conduct electricity

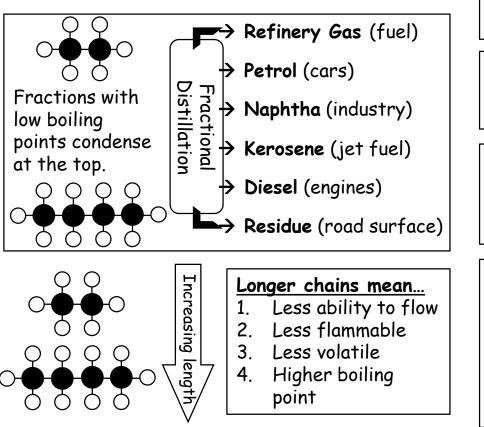
Exploiting Ores

- Mining has many environmental consequences:
- Scar the landscape
- Noisy & Dusty
- Destroy animal habitats
- Large heaps of waste rock
- Make groundwater acidic
- Release gases that cause acid rain

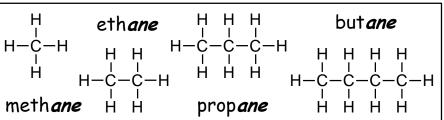
Recycling Metals

- Recycling aluminium saves 95% of the energy normally used to extract it!
- This saves money!
- Iron and steel are easily recycled. As they are magnetic they are easily separated
- Copper can be recycled too but it's trickier as it's often alloyed with other elements

Benefits	Drawbacks
 Steel is strong for	 Iron & steel can rust. Extraction causes
girders. Aluminium is corrosion	pollution. Metals are more
resistant. Many are malleable. Copper is a good	expensive than other
conductor and not	materials like concrete.


- 1. Is the majority of the periodic table metals or non-metals?
- 2. Name a transition metal which would be found *native*.
- 3. Which 2 groups of the periodic table are the transition metals found between?
- 4. Give 2 reasons why we use copper to make water pipes.
- 5. Give 2 drawbacks of mining transition metal ores.
- 6. Give 2 properties of transition metals
- 7. Is potassium a transition metal?
- 8. Explain your answer to question 7
- 9. Give 2 reasons why we recycle metals.
- 10. Which transition metal is a liquid at room temperature (*not on exam*)?

Transition Metals + Issues


Hydrocarbons and crude oil

<u>Crude Oil</u>

- A <u>mixture</u> of lots of different compounds.
- We separate it into substances with similar **boiling points**. These are called **fractions**.
- This is done in a process called <u>fractional</u> <u>distillation</u>.

Nearly all the compounds in crude oil are **hydrocarbons** (hydrogen and carbon only).

- Most of these are <u>saturated</u> hydrocarbons called <u>alkanes</u>.
- General formula for an alkane is $C_n H_{(2n+2)}$.

<u>Alkenes</u>

- These are unsaturated hydrocarbons
- They contain a double bond
- General formula is C_nH_{2n}

н

prop*ene*

Combustion of hydrocarbons

• When burnt in an adequate supply of air alkanes react to form <u>carbon dioxide</u>, e.g.

propane + oxygen → carbon dioxide + water

 When burnt in not enough oxygen <u>carbon</u> <u>monoxide</u> is formed instead

propane + oxygen \rightarrow carbon monoxide + water

- 1. Which 2 elements do hydrocarbons contain?
- 2. The process of separating out hydrocarbons by their boiling points is called ______?
- 3. Short chain hydrocarbons have the _____ (lowest / highest) boiling points.
- 4. How many bonds does carbon always form?
- 5. What is the name of the alkane with the formula C_2H_6 ?
- 6. How many carbon atoms does propane have?
- 7. The general formula for an alkane is: C_nH_{2n} , C_nH_{2n+2} or $C_{n+2}H_{2n}$
- 8. A hydrocarbon has 14 hydrogen atoms, how many carbon atoms will it have if it is (a) and alkane (b) and alkene?
- 9. What is the formula of the saturated hydrocarbon from question 8?
- 10. Which 2 products are formed when cyclohexane is burned in a plentiful supply of oxygen?

Hydrocarbons and crude oil

Pollution and Fuels

Fossil fuels also produce a number of impurities when they are burnt, main pollutants are summarised below

Sulphur Dioxide	Nitrogen Oxide	Particulates
 Poisonous gas It's acidic Causes <u>acid</u> <u>rain</u> Causes engine corrosion 	 Poisonous Trigger asthma attacks Can cause <u>acid rain</u> 	 Tiny solid particles Contain carbon and unburnt hydrocarbon Carried in the air Damage cells in our lungs Cause cancer

Global Warming

- Caused by carbon dioxide
- Causing the average global temperature to increase

Global Dimming

- Caused by particulates
- Reflect sunlight back into space
- Not as much light gets through to the Earth

<u>Biodiesel</u>	

Disadvantages

Less harmful to animals Breaks down 5 × quicker

Advantages

Reduces particulates

- Making it produces other useful products
- 'CO₂ neutral' plants grown to create it absorb the same amount of CO₂ generated when it's burnt

• Large areas of

farmland requiredLess food produced

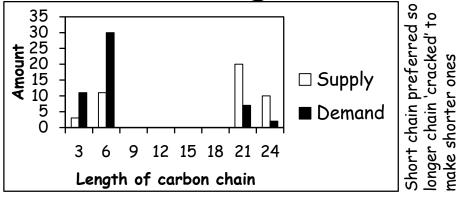
→ Famine

- Destruction of habitats
- Freezes at low temps

Ethanol

Advantages

- Easily made by fermenting sugar cane
- Gives off CO₂ but the sugar cane it comes from absorbs CO₂ when growing
- Disadvantages
- Large areas of farmland required
- Less food produced as people use it for fuel instead!


<u>Hydrogen</u>

Advantages	Disadvantages
 Very clean - no CO₂ Water is the only product 	 Hydrogen is explosive Takes up a large volume → storage becomes an issue

- 1. What pollutant causes acid rain?
- 2. What pollutant causes global dimming?
- 3. What pollutant causes global warming?
- 4. State a consequence of global warming.
- 5. State 1 advantage and 1 disadvantage of biodiesel.
- 6. Yeast cells respire during the fermentation process, what gas is given off?
- 7. Why is hydrogen considered a clean fuel?
- 8. State 1 disadvantage of hydrogen as a fuel.
- 9. What is the chemical formula of ethanol?
- 10. Explain the term carbon neutral.

Pollution and Fuels

Cracking and Polymerisation

Cracking

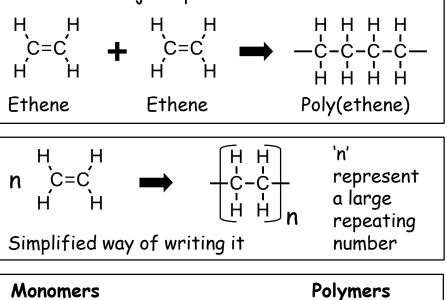
By heating a long chain fraction from crude oil to produce a vapour and then passing the vapour over a <u>catalyst</u> you can 'crack' it into smaller, more useful hydrocarbons

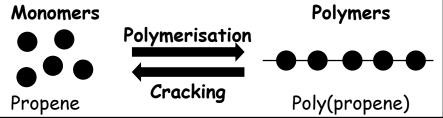
Decane	\rightarrow	pentane	+	propene	+	ethene
$C_{10}H_{22}$	\rightarrow	$C_{5}H_{12}$	+	C ₃ H ₆	+	C_2H_4

Saturated or unsaturated?

We can react products with bromine water to test for saturation:

Unsaturated + Bromine → COLOURLESS hydrocarbon Water


= ALKENES (alkanes will not react!)


Polymerisation

Polymers (plastics) re made from lots of monomers joined together to make a polymer

<u>Process</u>

- Double bond between carbons 'opens up'
- Replaced by single bonds as thousands of monomers join up

- 1. How do we turn long chain hydrocarbons into short chain ones?
- 2. What type of substance speeds up a chemical reaction without being used up?
- 3. What chemical is used to test for unsaturated hydrocarbons?
- 4. What would you expect to see during this test?
- 5. Name the monomer used to make: Polytetrafluoroethylene
- 6. Why do alkanes not react with bromine water?
- 7. Name the polymer formed by using the monomer: vinylchloride.
- 8. Draw the polymer formed by reacting 'n' monomers of:
- 9. What is the first step of the polymerisation process?
- 10. What is the second step?

Cracking and Polymerisation

<u>New Polymers, waste and ethanol</u>

Smart Polymers

Their properties changed by light, temperature or other changes in their surroundings.

Light-Sensitive Plasters	Hydrogels	Shape memory polymers
 Top layer of plaster peeled back Lower layer now exposed to light Adhesive loses stickiness Peels easily off the skin 	 Have cross- linking chains Makes a matrix that traps water Act as wound dressings Let body heal in moist, sterile conditions Good for burns 	 Wound is stitched loosely Temperature of the body makes the thread tighten Closes the wound up with the right amount of force

Issues with polymers

Biodegradable	Non-biodegradable
 Farmers sell crops like corn to make plastics Demand for food goes up Food prices go up Habitats destroyed to make farmland 	 Don't break down Litter the streets and shores (unsightly) Harm wildlife Last 100's of years Fill up landfill sites

Biodegradable Plastics

- Plastics that break down easily
- Corn-starch are built into the plastic
- Microorganisms in soil feed on corn-starch
- This breaks the plastic down

Ethanol - 2 main ways to make ethanol			
Fermentation	Hydration		
Uses corn, sugar cane, rice etc,(renewable resources).	Uses crude oil, which is a non-renewable resource.		
Is a batch process, which needs a lot of workers	Is a continuous process so is less labour intensive		
Produces impure ethanol, and is purified by distillation	Produces pure ethanol		
Needs a temperature of 30- 40 °C	Needs a temperature of 300 °C and high pressure		
Is a slow reaction	Is a fast reaction		

<u>Fermentation</u>

Sugar + Yeast → Ethanol + Carbon Dioxide H H

H-Ċ-Ċ-OH

Η

Ethanol

 $\begin{array}{l} \underline{\text{Hydration}}\\ \text{Ethene + Steam} \rightarrow \text{Ethanol}\\ C_2H_4 + H_2O \rightarrow C_2H_5OH \end{array}$

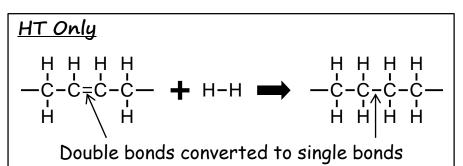
- 1. Which smart polymer would you use in nappies to absorb moisture?
- 2. Which smart polymer would you use to make light sensitive plasters?
- 3. Which smart polymer would you use to make dental bracers?
- 4. State 2 issues associated with biodegradable plastics.
- 5. State 2 issues associated with non-biodegradable plastics.
- 6. What is put into polymers to make biodegradable plastics?
- 7. What is the chemical formula of steam?

Answers to the following are **fermentation** or **hydration**:

- 8. Which process is cheaper?
- 9. Which process requires a high temperature?
- 10. Which process uses non-renewable sources?

New Polymers, waste and ethanol

<u>Oils</u>


2 v	2 ways to extract vegetable oils from plants:		
	Pressing		Distillation
1.	Farmers collect seeds from plants	1.	into water and
2.	Seeds are crushed and pressed, then the oil extracted	2.	boiled Oil and water evaporate
3.	Impurities are removed	3.	together Oil is collected as
4.	Oil is processed to make it into a useful product		the liquids separate
	•	e.g.	lavender oil

<u>Vegetable oils are important foods:</u>

- Provide important nutrients (e.g. vitamin E)
- Contain lots of energy \rightarrow can be used as fuels
- Unsaturated oils contain double bonds (C=C)
 → they decolourise Bromine water

Benefits of cooking with oil:

- Food cooks quicker
- Outside becomes crispier
- Inside becomes softer
- Food absorbs some of the oil
- Higher energy content
- Too much is unhealthy

- Reacting vegetable oils with <u>hydrogen</u> hardens them → increases melting points
- Makes them solid at room temperature → makes them into spreads!
- Double bonds converted to single bonds $C=C \rightarrow C-C$
- Now called a <u>hydrogenated oils</u>
- Reaction occurs at 60°C with a nickel catalyst

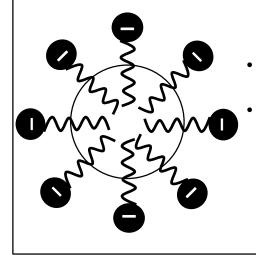
- 1. Vegetable oil has a boiling point of 300°C, why is cooking with a fryer faster than cooking with water?
- 2. Which cooks faster under the same conditions, 1kg baking potato or 1kg of chips?
- 3. Explain your answer to question 2.
- 4. Which are worse for your health; saturated or unsaturated oils?
- 5. Why are vegetable oils important in your diet?
- Answers to the following are <u>Pressing</u> or <u>Distillation</u>:
- 6. In which process is oil and water evaporated together?
- 7. In which process is groundnut oil made?
- 8. In which process would you need to separate oil from a pulp?

<u>HT Only</u>

- 9. What catalyst is used in the hydrogenation of unsaturated vegetable fats?
- 10. How does a catalyst work?

Oils

Emulsions and Food Issues


Oils do not dissolve in water, they are immiscible

Emulsions

Where oil and water are dispersed (spread out) in each other. They have special properties.

<u>HT Only</u>

Emulsifiers have 2 parts that make them work

- Hydrophobic tail is attracted to oil
- Hydrophilic head is attracted to water. Has a negative charge.

Emulsifiers

- Stop water and oil separating out into layers
- Improve texture and taste of foods containing fats and oils.
- Makes them more palatable (tasty) and tempting to eat!

 Unsaturated Fats: Source of nutrients like vitamin E Keep arteries clear Reduce heart disease Lower cholesterol levels Saturated Fats: Are not good for us Increase risk of heart disease Increase cholesterol 	Vegetable Oils		<u>A</u>	<u>Animal Fats</u>		
	Uı • •	Source of nutrients like vitamin E Keep arteries clear Reduce heart disease Lower cholesterol		Are not good for us Increase risk of heart disease Increase		

E Numbers

Additives approved for use in Europe

- 1. What type of reagent stops water and oil separating out into layers?
- 2. What is formed when oil and water are dispersed in each other?
- 3. Why do we use emulsifiers in cooking?
- 4. Which are better for us, vegetable oils or animal fats?
- 5. What type of numbers are put onto food labels in Europe and include information about the additives present?

Answers to the following are **<u>Unsaturated Fats</u>** or <u>**Saturated Fats**</u>:

- 6. What type of fat lowers cholesterol?
- 7. What type of fat causes heart disease

<u>HT Only</u>

- 8. What part of an emulsifier is attracted to the oil?
- 9. What part of an emulsifier is attracted to the water?
- 10. What type of charge does the Hydrophilic head have?

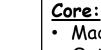
Emulsions and Food Issues

The Earth's Structure

<u>Atmosphere:</u>

- Most lies within 10km of the surface
- Rest is within 100km but it's hard to judge!

<u>Crust:</u>


- Solid
- 6km beneath oceans
- 35km beneath land

Moving Continents

- The Earth's crust and upper mantle are cracked into a number of pieces → <u>tectonic</u> <u>plates</u>
- These are constantly moving just very slowly
- Motion is caused by <u>convection currents</u> in the mantle, due to radioactive decay

<u>Pangea</u>

If you look at the continents they roughly fit together. Scientists think they were once one large land mass called Pangea, which then broke off into smaller chunks

- <u>ore:</u> Mada of nic
- Made of nickel and iron
- Outer core is liquid
- Inner core is solid
- Radius is 3500km

<u>Mantle</u>

- Behaves like a solid
- Can flow very slowly
- Is about 3000km deep!

Wegener's evidence for continental drift:

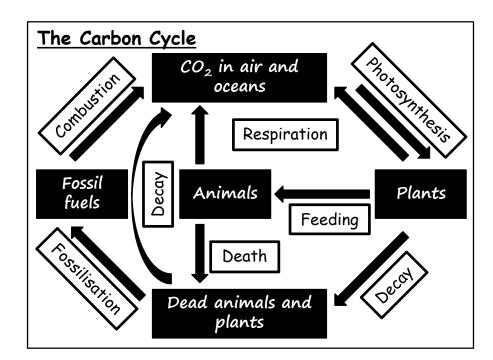
- The same types of fossilised animals and plants are found in South America and Africa
- The shape of the east coast of South America fits the west coast of Africa, like pieces in a jigsaw puzzle.
- Matching rock formations and mountain chains are found in South America and Africa

<u>Plate Boundaries</u>

- Earthquakes and volcanoes happen when tectonic plates meet
- These are very difficult to predict

- 1. Put the layers of the Earth in order from outside inwards: outer core, mantle, crust, inner core, mantle, atmosphere
- 2. Which layer of the Earth is the hottest?
- 3. Which layers of the Earth are solid (there are 2)?
- 4. In which layer of the Earth do convection currents occur?
- 5. What type of plates is the Earth's crust cracked into?
- 6. State 2 pieces of evidence to support Wegener's idea of continental drift
- 7. Why did no one believe Wegener's theory
- 8. What was the name given to the Earth when it was just one super continent?
- 9. State 3 natural events which occur at plate boundaries.
- 10. Why are Earthquakes difficult to predict?

The Earth's Structure


The Earth's Atmosphere

Evolution of the Earth's Atmosphere			
Phase 1	Phase 2	Phase 3	
Volcanoes = Steam & CO ₂	Green Plants, Bacteria & Algae = Oxygen	Ozone Layer = Animals & Us	
 Volcanoes kept erupting giving out Steam and CO₂ The early atmosphere was nearly all CO₂ The earth cooled and water vapour condensed to form the oceans 	 Green plants, bacteria and algae ran riot in the oceans! Green plants steadily converted CO₂ into O₂ by the process of photosynthesis Nitrogen released by denitrifying bacteria Plants colonise the land. Oxygen levels steadily increase 	 The build up of O₂ killed off early organisms - allowing evolution of complex organisms The O₂ created the Ozone layer (O₃) which blocks harmful UV rays from the sun Virtually no CO₂ left 	

<u>Carbon Dioxide Levels</u>

Have increased in the atmosphere recently largely due to the amount of fossil fuels we now burn

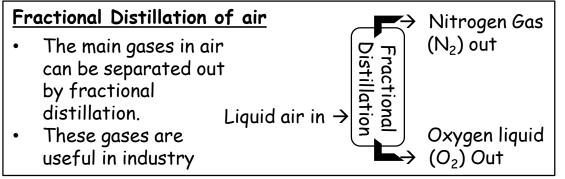
The Ear	The Earth's Atmosphere Today Other				
Gas	Formula	%	CO ₂		
Nitrogen	N ₂	71	O_2		
Oxygen	<i>O</i> ₂	28			
Other		0.94	\ N ₂ /		
Carbon dioxide	CO2	0.06			

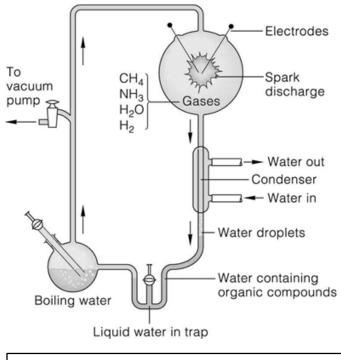
- 1. Name a gas in the Earth's early atmosphere (other than CO_2)
- 2. What are the origins of CO_2 in the Earth's early atmosphere?
- 3. What process undergone by plants removed CO_2 from the Earth's early atmosphere?
- 4. How did the oceans form from the early atmosphere?
- 5. Which is the most abundant gas in the atmosphere today?
- 6. State 3 sinks of CO_2 on the planet (i.e. where it is stored).
- 7. What is the main cause of the rising levels of CO_2 in the atmosphere today?
- 8. Why could the levels of CO_2 in todays atmosphere be considered insignificant?
- 9. The level of CO_2 in the atmosphere is maintained by this cycle.
- 10. In the atmosphere what blocks harmful UV radiation from the sun?

The Earth's Atmosphere

<u>Life on Earth</u>

<u>HT Only</u>


No one can be sure how life on Earth first started. There are many different theories:


Miller-Urey Experiment

- Compounds for life on Earth came from reactions involving hydrocarbons (e.g. methane) and ammonia
- The energy for this could have been provided by lightning

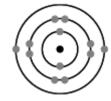
Other Theories

- 1. Molecules for life (amino acids) came on meteorites from out of space
- 2. Actual living organisms themselves arrived on meteorites
- 3. Biological molecules were released from deep ocean vents

Carbon Dioxide

- Taken in by plants during photosynthesis.
- When plants and animals die carbon is transferred to rocks.
- Form fossil fuels, the CO_2 is released into the atmosphere when burnt.

- 1. State 3 ways in which CO_2 is removed from the atmosphere.
- 2. Other than water what other product is formed when fossil fuels are burnt?
- 3. Name 2 gases thought to be in the Earth's early atmosphere.


<u>HT Only</u>

- 4. What process can be used to separate gases in the air?
- 5. Which chemical has the lowest boiling point; CO_2 or Nitrogen?
- 6. What was the Miller-Urey experiment trying to prove?
- 7. What natural event is required for gases in the atmosphere to react?
- 8. Considering this event, what is a flaw in the design of the experiment?
- 9. What type of simple molecules fundamental to life were found as a product during the experiment?
- 10. Why could the evidence provided be considered weak?

Life on Earth

<u>Atoms</u>

- 1. Neutrons
- 2. Shells (accept: Orbitals)
- 3. +1 (accept: positive, plus, +)
- 4. Atoms are neutral because they contain equal numbers of protons and electrons.
- 5. Protons = 3, Electrons = 3, Neutrons = 3.
- 6. Atomic number = 8, Mass Number = 16
- 7. 2,6
- 8. Magnesium atom, Mg =

- 9. One type of atm
- 10. Elements contain only one tpye of atom, compounds more than one. (*accept: elements are on the periodic table*)

Periodic Table and Bonding

- 1. Group 1 (accept Alkali Metals)
- 2. Increase
- 3. Across
- 4. Right
- 5. Transition metals/elements

- 6. Oxygen
- 7. Gallium
- 8. Full outer shell of electrons (accept: all electrons are paired, or, no electrons can be added or taken away, or, forms a stable configuration)
- 9. False
- 10. Ionic bonds exist between metals and nonmetals.

<u>Chemical Equations</u>

- 1. Copper carbonate.
- 2. 2 products
- 3. Copper oxide
- 4. Carbon dioxide
- 5. 1.5 tonnes
- 6. Magnesium and Hydrochloric acid
- 7. Hydrogen
- 8. Aqueous, dissolved in water.
- 9. Equal number of atoms on both sides of the equation.
- 10. Squeaky pop is heard with a lit splint

<u>Limestone and Carbonates – 1</u>

- 1. Calcium carbonate, limestone, chalk, marble, travertine.
- 2. 3
- 3. 5
- 4. Sand, water, gravel cement.
- 5. Limewater (accept: calcium hydroxide, or, $Ca(OH)_2$).
- 6. Limewater turns cloudy/milky.
- 7. Calcium hydroxide, $Ca(OH)_2$
- 8. Clay.
- 9. Acid rain.
- 10. Thermal decomposition.

Limestone and Carbonates - 2

- 1. Carbon dioxide, CO₂
- 2. Zinc oxide.
- 3. Calcium hydroxide, Ca(OH)₂
- 4. *C*aCO₃
- 5. Provide jobs, Lead to improved roads, Filled in to make fishing lakes or for planting trees, Can be used as landfill sites when finished with. (*accept: any other sensible answer*).

- 6. Destroys habitats, Increased emissions, Noisy & Dusty, Dangerous areas for children, Busier roads. (*accept: any other sensible answer*).
- 7. Filtering (accept: Filter paper, or, decanting)
- 8. Equal number of atoms on both sides of the equation.
- 9. Limewater.
- 10. <u>Social</u>: noise and dust leading to health problems. <u>Environmental</u>: habitats destroyed to make way for roads. <u>Economic</u>: People late for work costs the economy money. (*accept: any other sensible answer*).

Extracting Metals

- 1. Ore.
- 2. Electrolysis (*accept: use a more reactive metal*).
- 3. It is found native.
- 4. Carbon is cheap.
- 5. Copper + carbon dioxide.
- 6. Bioleaching or Phytomining.
- 7. Smelting (accept: electrolysis of copper sulphate).

8. A kiln.

- 9. Money is needed to pay workers, required a lot of energy, lots of trucks needed to move the copper (*accept: any other sensible answer*).
- 10. Mining.

Aluminium, Titanium and Alloys

- 1. Oxide layer on the surface.
- 2. Drinks cans, cooking oil, saucepans, overhead cables, aeroplanes and bicycles, cooking foil.
- 3. Hip replacements, racing bikes, jet engines, parts of nuclear reactors.
- 4. Mining has many environmental, Large heaps of waste rock, requires less energy, (*accept: any other sensible answer*).
- 5. Requires energy, need to employ peopl costing money. (*accept: any other sensible answer*).
- 6. Good conductors of electricity and energy, Strong, Malleable – easily bent into shape, High melting points.
- 7. Does not rust, shiny (more attractive).

- 8. The different sized atoms of the metals distort the layers in the structure, making it more difficult for them to slide over each other and so make alloys harder than pure metals.
- 9. Alloy.
- 10. Cannot be found on the periodic table.

Transition Metals + Issues

- 1. Metals.
- 2. Gold, silver, platinum.
- 3. Group 2 and group 3.
- 4. Good conductor of heat, can easily be bent into shape (malleable).
- 6. Destroy's habitats, Increased emissions, Noisy & Dusty, Dangerous areas for children, Busier roads. (*accept: any other sensible answer*).
- 7. No.
- 8. It is in group 1.
- 9. Saves money, saves energy, we will run out eventually. (*accept: any other sensible answer*).
- 10. Mercury, Hg.

Hydrocarbons and crude oil

- 1. Hydrogen and carbon.
- 2. Fractional distillation.
- 3. Lowest.
- 4. 4
- 5. Ethane.
- 6. 3
- 7. $C_n H_{2n+2}$
- 8. Alkane = 6, Alkene = 7
- 9. C_6H_{14}
- 10. Carbon dioxide (CO_2) and water (H_2O)

Pollution and Fuels

- 1. Sulphur dioxide, SO_2
- 2. Carbon particulates
- 3. Carbon dioxide CO₂
- 4. The Earth gets hotter
- 5. <u>Advantages</u>: Less harmful to animals, Breaks down quicker. Reduces particulates, Making it produces other useful products, 'CO₂ neutral'. <u>Disadvantages</u>: Large areas of farmland required, Less food produced → Famine, Destruction of habitats, Freezes at low temps

- 6. Carbon dioxide CO_2
- 7. Only product is water (no CO_2) when burnt.
- 8. Hydrogen is explosive, Takes up a large volume, therefore storage becomes an issue.
- 9. C_2H_5OH
- 10. CO_2 neutral' plants grown to create it absorb the same amount of CO_2 generated when it's burnt

Cracking and Polymerisation

- 1. Cracking.
- 2. Catalyst.
- 3. Bromine water.
- 4. Colour change from orange to colourless.
- 5. Tetrafluoroethylene.
- 6. The do not contain double bonds.
- 7. Polyvinylchloride (PVC)
- 8. The polymer formed is:

- 9. Double bond between carbons 'opens up'
- 10. Replaced by single bonds as thousands of monomers join up.

<u>Mark Scheme</u>

<u>New Polymers, waste and ethanol</u>

- 1. Hydrogel
- 2. light sensitive plasters
- 3. Shape memory polymers
- 4. Farmers sell crops like corn to make plastics, Demand for food goes up, Food prices go up, Habitats destroyed to make farmland. (*accept: any other sensible answer*).
- 5. Don't break down, Litter the streets and shores (unsightly), Harm wildlife, Last 100's of years, Fill up landfill sites. (*accept: any other sensible answer*).
- 6. Corn-starch.
- 7. H₂O.
- 8. Fermentation.
- 9. Hydration.
- 10. Hydration.

<u>Oils</u>

- 1. Temperature is higher in the fryer.
- 2. 1kg o chips.
- 3. Larger surface area.
- 4. Saturated fats

- 5. Provide important nutrients (e.g. vitamin E)
- 6. Distillation.
- 7. Pressing.
- 8. Pressing.
- 9. Nickel
- 10. Speeds up a chemical reaction without being used up. (*accept: lowers the activation energy for successful collisions to occur*).

Emulsions and Food Issues

- 1. Emulsifier.
- 2. Emulsion.
- 3. Improve texture and taste of foods containing fats and oils, or, makes them more palatable (tasty) and tempting to eat.
- 4. Vegetable oils
- 5. E-numbers
- 6. Unsaturated
- 7. Saturated
- 8. Hydrophobic tail
- 9. Hydrophilic head
- 10. Negative

<u>The Earth's Structure</u>

- 1. Atmosphere, crust, mantle, outer core, inner core.
- 2. Inner core.
- 3. Crust, inner core.
- 4. Mantle.
- 5. Tectonic plates.
- 6. The same types of fossilised animals and plants are found in South America and Africa, or, The shape of the east coast of South America fits the west coast of Africa, like pieces in a jigsaw puzzle, or, Matching rock formations and mountain chains are found in South America and Africa.
- 7. Very little evidence, cannot see under the Earth's surface i.e. convection currents.
- 8. Pangea.
- 9. Volcanoes, Earthquakes, mountains.
- 10. Unsure of the direction of convection currents, cannot see under the curst (*accept: any other sensible answer*).

The Earth's Atmosphere

- 1. Ammonia (NH₃), or, Methane (CH₄), or, Water (H₂O), or, Hydrogen (H₂)
- 2. Volcanoes.
- 3. Photosynthesis.
- 4. The earth cooled and water vapour condensed to form the oceans
- 5. Nitrogen
- 6. Oceans, Fossil fuels, Rocks, Plants
- 7. Burning of fossil fuels.
- 8. There is only a very low percentage compared to other gases.
- 9. Carbon cycle.
- 10. The ozone layer (O_3)

Life on Earth

- 1. Taken in by plants during photosynthesis, When plants and animals die carbon is transferred to rocks, Form fossil fuels, the CO_2 is released into the atmosphere when burnt.
- 2. Carbon dioxide, CO₂ (*accept: sulphur dioxide, SO₂*).

<u>Mark Scheme</u>

Life on Earth (continued)

- 3. Carbon dioxide (CO_2), Ammonia (NH_3), or, Methane (CH_4), or, Water (H_2O), or, Hydrogen (H_2).
- 4. Fractional distillation.
- 5. Nitrogen.
- 6. How life o Earth first started.
- 7. Thunderstorm (*accept: lightning*).
- 8. Constant lightning for a week or more does not happen.
- 9. Amino acids.
- 10. There is a large gap between amino acids and living organisms, or, no-one can be sure what the gases were when the Earth began