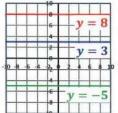
Graphs Foundation

Plotting coordinates

(-5,4)

Reading the coordinates will lead you to the exact position.

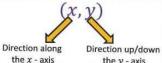

 $(7, -4) \Longrightarrow$ Seven units right, Four units down

(-5, -2) \Longrightarrow Five units left, Two units Down

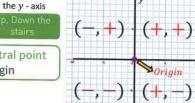
 $(-2,6) \Longrightarrow$ Two units left, Six units up

Understanding graphs

Horizontal lines $\rightarrow v = ?$



Vertical lines


A set of values that indicate the position of a point.

They normally occur in pairs in the form (x, y)

coordinates

and halve it

Four Quadrants

Linear graphs

All straight line graphs follow the same rule v = mx + c

Gradient y intercept

Gradient is the 'steepness' of the line Change in y Change in x Rise up Calculated by Run along

Equation of line from coordinates

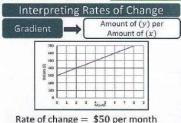
Calculate gradient between points (m)

Substitute in points and solve (c)

Find the equation of the line that passes through (0,2) and (3,8)

$$\mathsf{Gradient} = \frac{y_2 - y_1}{x_2 - x_1} \Longrightarrow \frac{6}{3} = 2 \Longrightarrow (m)$$

$$y = 2x + c \xrightarrow{substitute} 8 = 2(3) + c$$


$$8 = 6 + c \xrightarrow{solve} 2 = c$$

$$y = mx + c$$
$$y = 2x + 2$$

Start from a central point $\rightarrow x = ?$ (0,0) - Origin

Mid points and parallel lines

Rate of change A rate that describes how one quantity changes in relation to another quantity It is represented by the (x_2, y_2) Gradient of a line Gradient = $\frac{y_2 - y_1}{}$

Midpoints A midpoint is the halfway point Parallel lines are lines that run

Find the coordinate of the midpoint

joining the points (6,11) and (15,-9)

 $x = 10.5 \Rightarrow (10.5, 1) \Rightarrow y = 1$

Add up the v

and halve it

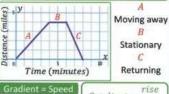
equidistant to each other and never Parallel lines have the same gradient.

Different y - intercepts

Parallel lines

Find the equation of the line parallel to y = 2x + 4 that passes through (4,2) Substitute in point and solve (c)

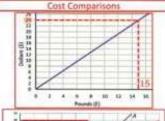
$$y = 2x + c \Longrightarrow 2 = 2(4) + c$$

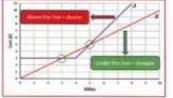

$$2 = 8 + c \longrightarrow -6 = c$$

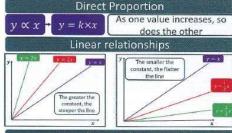
Real life graphs

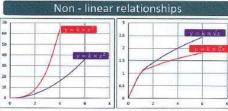
Distance – Time graphs Distance - Time graphs record the journey of an object as it begins to

(7,7)


move away from and return to a point.




Time (seconds)


Financial graphs **Currency Conversions** Predict future costs

Proportion graphs

