
Numbers Foundation

Algebra

Foundation

What is algebra?

Algebra is the language we use to communicate mathematical information

Letters used to represent values are known as variables.

Notation creates shortcuts

$$a \times b$$
 becomes ab coefficient $x + x + x + x$ becomes $4x$ $y \times y$ becomes y^2

$$6xy - 5\frac{a}{b} + 21x^4 \qquad 6xy - 5\frac{a}{b} +$$

Expression

Same rules of BIDMAS applies to Algebra

Collecting terms

Collecting like terms enables us to simplify expressions making them easier to use

Terms that contain the exact same variable can be classed as 'like' terms and be simplified

Watch out for the sign before each term

$$5x + 6y - 2x - 5y = 3x + y$$

$$5xy + 3x - 2xy + 4y = 3xy + 3x + 4y$$

$$2x^2 + 3x + 5x^2 - 5x = 7x^2 - 2x$$

Identify like terms

Use coefficients to collect like terms

First step in many problems involving Algebra

Algebraic HCF

HCF = a

$$12x - 6y + 3z$$
 HCF = 3 $3(4x - 2y + z)$

$$ax + aby + 4az$$
$$a(x + by + 4z)$$

Expanding brackets

$$10(x+y+4) = 10x + 10y + 40$$

$$3x(6x-2) = 18x^2 - 6x$$

Expanding brackets often the first step in simplifying algebra

$$2(x+3y) - 7(2x-y) = 2x + 6y - 14x + 7y$$
Include sign in multiplication
$$= -12x + 13y$$

(x+4)(x-3) Split brackets up around grid +4 Multiply each term in the grid

 $x^2 + x - 12$

$$A = \pi r^2$$

Subject

Using formulas

Explains how to calculate the value of a variable

"The price of a taxi fare in Manchester depends on the distance driven. Each fare is charged a flat fee of £2 and then £3 for each mile driven."

$$C = 2 + 3M$$

For any given trip, can easily work out the cost of a taxi

Area of circle formula

$$A = \pi r^2$$

Replace letters in the formula with numbers you are given

"The perimeter of a square is 4 times the length of its sides"

$$P = 4l$$

What is perimeter of a square with side length 5cm?

$$P = 4(5)$$

$$P = 20cm$$

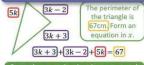
Identify the formula and the values to substitute in.

Substitute values in using brackets

Carry out calculation remembering BIDMAS

Creating and solving linear equations

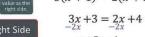
Expand brackets and


simplify (collect like terms)

If x is on both sides.

eliminate smallest value

Eliminate excess number


Divide and solve for x

3(x+1) = 2(x+2)

Compound Measures

speed =

density =

pressure =

distance

time

volume

area

Solving fractional linear equations

Equations where fractions are involved

Fractions are divisions and can be eliminated by multiplying

$$\frac{x}{2} = 5 \qquad x = 10$$

Remove variable from denominator

$$\frac{2y}{(3-y)} = 4 \longrightarrow 2y = 4(3-y)$$

$$\times (3-y) \times (3-y)$$

Cross-multiplying allows us to move terms in a fraction from one side of an equation to the other

$$\frac{x+1}{3} = \frac{x}{2}$$

$$2(x+1) = 3x$$

Formulas I must memorise

Laws of Indices

$x^1 = x$	Anything to the power $1 = itself$		
$x^0 = 1$	Anything to the power $0 = 1$		

 $1^{x} = 1$ 1 to the power of anything = 1

$x^a \times x^b = x^{a+b}$ $z^3 \times z^7 = z^{10}$

When multiplying powers with the same base - Add the powers

$$x^a \div x^b = x^{a-b}$$
$$s^2 \div s^5 = s^{-3}$$

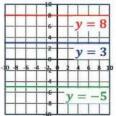
When dividing powers with the same base - Subtract the powers

$$(x^a)^b = x^{a \times b}$$
$$(e^4)^3 = e^{12}$$

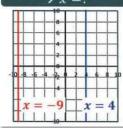
When raising the power (brackets) - Multiply the powers

A series of numbers, patterns 3 8 13 18... 23 28 33 マン マン マンマ +5 +5 +5 +5 +5 +5 Each number in the sequence is known as a 'term' Identify what is happening between each term to generate the rule

Sequences

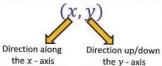

General rule is known as nth term.

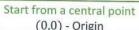
mbers	Numbers	Numbe	
1	1	1	
3	4	8	
6	9	27	
10	16	64	
15	25	125	


Graphs Foundation

Understanding graphs

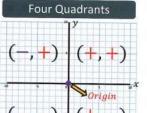
Horizontal lines $\rightarrow v = ?$



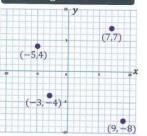

Vertical lines $\rightarrow x = ?$

A set of values that indicate the position of a point.

They normally occur in pairs in the form (x, y)


coordinates

and halve it


Reading the coordinates will lead you to the exact position.
$$(7, -4) \Longrightarrow$$
 Seven units right, Four units down

$$(-2,6) \Longrightarrow$$
 Two units left, Six units up

$$(-5, -2)$$
 \Longrightarrow Five units left, Two units Down

Plotting coordinates

Linear graphs

All straight line graphs follow the same rule
$$y = mx + c$$
Gradient y intercept

Gradient is the 'steepness' of the line

Equation of line from coordinates

Calculate gradient between points (m)

Substitute in points and solve (c)

Find the equation of the line that passes through (0,2) and (3,8)

$$\mathsf{Gradient} = \frac{y_2 - y_1}{x_2 - x_1} \Longrightarrow \frac{6}{3} = 2 \Longrightarrow (m)$$

$$y = 2x + c \xrightarrow{substitute} 8 = 2(3) + c$$

$$8 = 6 + c \xrightarrow{solve} 2 = c$$

$$y = mx + c$$
$$y = 2x + 2$$


Mid points and parallel lines

Find the coordinate of the midpoint

joining the points (6,11) and (15,-9)

 $x = 10.5 \Rightarrow (10.5, 1) \Rightarrow y = 1$

Rate of change A rate that describes how one quantity changes in relation to another quantity It is represented by the (x_2, y_2) Gradient of a line Gradient = $\frac{y_2 - y_1}{}$

Add up the v

and halve it

Midpoints Parallel lines A midpoint is the halfway point Parallel lines are lines that run

equidistant to each other and never Parallel lines have the same gradient.

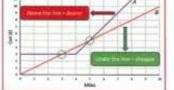
Different y - intercepts

y = mx + cSame Different

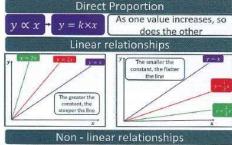
Find the equation of the line parallel to y = 2x + 4 that passes through (4,2) Substitute in point and solve (c)

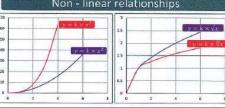
 $y = 2x + c \Longrightarrow 2 = 2(4) + c$

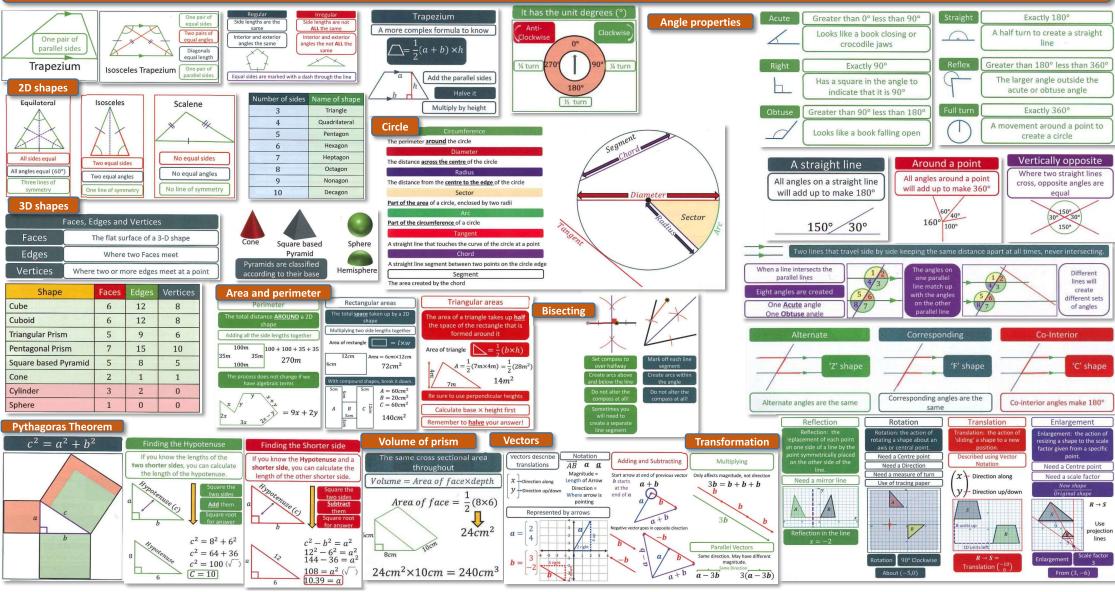
Distance - Time graphs record the journey of an object as it begins to move away from and return to a point. ତ୍ର ₄ y Moving away Stationary Time (minutes) Returning Gradient = Speed Gradient = run Distance Speed = constant speed Time Time (seconds)


Real life graphs

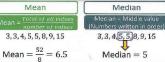
Distance – Time graphs


Financial graphs


Currency Conversions Predict future costs Cost Comparisons



Proportion graphs


Geometry Foundation

Data Handling

Foundation

Using the mean to find the

total amount Mean×Number of values

Ezytown FC have scored an average of 3.8 goals per game in their last 15 matches. How many goals have they scored? $3.8 \times 15 = 57 aoals$

Sum

Location =

 $\frac{45+1}{-}=23$

Averages from frequency tables

4 --- 0

11 --- 11

12 --- 24

7 --- 21

6 --- 24

40

Median

The median lies between

20th and 21st value

fx

80

11 15

7

6

40

Use of formula to find location of median n+1Location = The median of 45 values would be the 23rd number when written in order

This column is

created by

multiplying

the frequency

(f) by the

number in

the category

(x)

27 12

Each value appears twice so there is no mode

Mode 3, 3, 4, 5, 5, 8, 9, 15

3, 3, 4, 5, 5, 8, 9, 15

Mode = 3 and 5 Range = 15 - 3 = 12

Interpreting measures of Occurrence of no mode If every value appears The Smaller the range, the oser and more 'consistent

equally, there is no mode 1, 1, 3, 3, 7, 7

This enables

us to find out

the total

amount

which is

needed for

the mean

Add down the frequency

column. When location

value has been exceeded,

that is the group where the

median lies.

Median = 2

the values are. The larger the range, the more varied and more inconsistent' the values are.

Mean

dean = Total of all valu

 $Mean = \frac{Total\ of\ fx\ column}{Total\ of\ fx\ column}$

Mean = $\frac{80}{40} = 2$

Mode

Mode = Most common

The category with the highest

frequency

Range

4 - 0 = 4

Total frequency

spread

Range

Data which can be

grouped into

categories

Hair colour

Favourite food

Sport Grouped Data

Data which is

organised into classes

Data collected by you

Data gathered from

another source

Angle

150°

120"

50"

40°

30

24

10

8

72

72

1 Guest =

Quantitative Qualitative Data that is numeric Data that is descriptive Categorical data

Data that can be counted and only has certain values People on a bus

Shoe Size Dress size

Data that can be measured to various levels of accuracy Height of a tree

Speed of a car Mass of a person

A set is a collection of things, called elements

The set of prime

Intersections (n) and Unions (U)

 $A = \{2, 3, 5, 7, 11\}$

 $B = \{1, 3, 5, 7, 9\}$

 $A = \{2, 3, 5, 7, 11\}$

 $A \cap B = \{3, 5, 7\}$ – Intersection of A and B

Probability tree diagrams

Probability trees are really useful to calculate the probabilities of combined events happening

Multiply along branches $P(Red\ and\ Red) = \frac{4}{15}$

 $P(1 \text{ Red and 1 Blue}) = \frac{2}{15} + \frac{6}{15} = \frac{8}{15}$

Find degrees per value

Nationality of Hotel Guests.

Ginand Birting Birenty Claresa

We use scatter graphs when we are interested in the relationship between two variables

Labour Party		1	Labour Party Electoral			
		450	Performance			
31	232	c 400				
29	258	5 400 ≥ 350				
35	356	Seats 300				
41	413	250				
43	418	200				
34	271	200 25	30 35 40			

its	450	Labour Party Electoral Performance					
2							
3	5 400 ≥ 350						
5	Seats 000						
3	250						
3	200						
L	25	30 35 40 Vote (%)					

As one value increases

As one value increases, the other decreases

Negative Correlation

No link between the two variables

One of the main incentives for drawing lines of best fit is to make prediction

Place line of best fit through the middle of the data. (Ignore Outliers)

Predict values by reading off the line 40% = 390 seats

Interpolation

probability

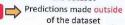
Multiply

each

probability

so does the other

Predictions made within the dataset


Types of events

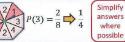
Mutually exclusive

Events that cannot happen at the same

Rolling a die $\rightarrow P(1 \text{ and } 6)$

Extrapolation

he likelihood of an event happening 1/2 3/4 25% 50% 75% 100% 0.25 0.5 0.75


Counting outcomes Working out how many combinations

RO	ning a	die a	na m	phing	a con	1
	1	2				
eads	H, 1	H, 2	Н, 3	H, 4	Н, 5	Н, 6
	T, 1	T, 2	T, 3	T, 4	T, 5	T, 6
Th	is is a	samp	le spa	ice di	agran	1

There are 12 possible outcomes from this event

Calculating probability

P(a or b) = P(a) + P(b)

 $P(a \text{ and } b) = P(a) \times P(b)$

Flip a coin twice

 $P(2 \ tails) = \frac{1}{2} \times \frac{1}{2} \Longrightarrow \frac{1}{4}$

All probabilities from the event will sum to make 1

Events where the outcome of one doesn't

affect the outcomes of the others Picking a counter out of a bag, replacing it and repeating.

Events where the outcome of one does affect the outcomes of the others Picking a counter out of a bag, not replacing it and repeating.

Calculating expected outcomes

P(event)×number of trials

Bar Charts Hours Worked per Week Title Axes Scales Labels 2 50 E 40 Bars ≥ 30 legual width) 5 20 Read off bars Ellie = 40 hours Barry Mary Naseem Ellie

Line charts are useful for displaying time series data UK ODE Data points within the lines are important Lines visualise change Extract required data 144 144 147 carefully 1013 3018 2014 2001