

In year 9, pupils will continue to build on their understanding of the concepts they learnt during years 7 & 8. In year 9, pupils are taught within the specialisms of biology, chemistry and physics. Pupils of all abilities continue to develop their knowledge and understanding of the 'big ideas' in science. In year 9, pupils will continue to develop the skills required to be able to see the world analytically, to explain phenomena, to make predictions and evaluate the use of models in science. The Year 9 curriculum is designed to be engaging, contextual and assessable to all pupils. Pupils will continue to develop practical skills which develop not only deep scientific understanding but also key transferable skills such as teamwork, leadership, and organisation. Proficiency in the laboratory is important for enabling progression on to science beyond GCSE, A-level and University. Pupils will continue to have the opportunity to apply mathematical concepts and calculate results to draw conclusion from. Interpret observations, evaluate data, showing an awareness of potential sources of random and systematic error and identify further questions arising from experimental results.

In year 9, each discipline contains smaller topics that build in complexity. For example, 'Waves', topics builds upon the simpler, more concrete topics 'Light' and 'Sound' covered in year 7 and 8, to more abstract ones 'Wave properties' and 'Wave effects', thus building effective foundations for GCSE.

Autumn Term	Core Biology The genome and inheritance Variation and Evolution	Core Chemistry Periodic Table	Core Physics Floating and Sinking Electricity and magnetism
Key subject knowledge:	Building on the year 7 topic of cells and year 8 cells to organ systems, this covers inheritance, chromosomes, DNA and genes. It includes learning about Watson, Crick, Wilkins and Franklin and their role in the development of the DNA model. It builds upon the big idea in biology that differences between organism's	The topic of the periodic table pulls together all previous learning of materials, particle model, atoms, and chemical reactions. This foundational knowledge allows students to study the atomic model, identify periodic patterns and trends in physical properties.	Students will build on their year 7 work on forces when studying floating and sinking. This topic also covers 'density' and student will use their chemistry and physics understanding of particle theory for this concept. Pressure is also covered (both in solids and fluids) linking force and surface area in a quantitative way.

	cause species to evolve by		In the electricity and magnetism
	natural selection.		,
	natural selection.		topic, students are introduced to
			the final way of energy transfer.
			They build on their knowledge of
			the structure of the atom when
			looking at static electricity, and
			forces when they consider why
			charges can attract or repel.
			Students will learn how to build
			circuits and describe qualitatively
			the relationships between
			current, voltage and resistance.
			Students will use their
			understanding of energy transfer
			to compare power ratings and
			domestic fuel bills, fuel use and
			costs.
Key disciplinary knowledge:	Describe how scientists worked	Make predictions about reactions	Describe factors that affect gas
, , , ,	together to develop the DNA	of elements based on their	pressure and interpret
	model.	position within a group.	observations.
	Use simple genetic diagrams to	Make and record accurate	Describe the factors that affect
	predict how alleles may affect an	experimental observations.	the pressure on a solid and apply
	organism's future offspring.	Development of scientific models	the equation to real life scenarios
	Be able to use graphical data to	over time.	Describe what is meant and how
	see the relationship between		we measure current, potential
	continuous and discontinuous		difference and calculate
	variation.		resistance in series and parallel
			circuits.
			Draw field lines round a magnet
			in detail.
			Predict and test the effect of
			changes to an electromagnet.

Summative Assessment Strategies	In-class quiz	In-class quiz	In-class quiz
	Homework-Seneca Assignment	Homework-Seneca Assignment	Homework-Seneca Assignment
	End of unit test (Forms)	End of unit test (Forms)	End of unit test (Forms)
How does this unit prepare students for future	Students use knowledge of	The Periodic Table of Elements is	The method of transferring
study?	genetics and the theory of	central to the study of modern	energy is a theme that is
	natural selection to explain	Chemistry. Pupils will continue to	continued throughout GCSE
	evolution throughout all GCSE, A-	study the periodic table beyond	physics and beyond
	level and University courses	A-level	

Spring Term	Core Biology Health and Disease	Core Chemistry Reactions of Metals and Metal Compounds	Core Physics Work done and turning forces
Key subject knowledge:	This topic builds on the core understanding of cell structure and looks at how disease can affect organ systems in multicellular organisms. It builds on the concept that organisms must stay in good health to survive and thrive, the health of an individual organism results from interactions between the organism's body, behaviour, environment, and other organisms. Pupils will learn about how the health of humans can be affected by communicable and noncommunicable diseases.	Building on their work of the periodic table and year 8 'acids and alkali', this topic will focus specifically on the reactions of acids with metals and the chemical properties of metal and non-metal oxides with respect to acidity. Students will revisit exothermic and endothermic chemical reactions.	Students will build on their year 7 work on forces when studying moments (the turning effect of a force). This will build on students understanding of balanced and unbalanced forces and allow for quantitative analysis of why unbalanced forces would produce a moment. They will build upon their knowledge of energy transfers and the concept of 'work' done in physics.

Key disciplinary knowledge	Plan a practical that will allow you to investigate the effect of caffeine on heart rate. Experimental improvements to reduce random and systematic	Compare chemical properties of metals and non-metals through experiment. Analysing data. Equation writing.	Manipulate formulaic relationship of work done and relate to levers and gears. Manipulate formulaic relationship of moments and
	errors. Data analysis related to health.		relate to situations involving moments. Understand and use SI units.
Summative Assessment Strategies	In-class quiz Homework-Seneca Assignment End of unit test Mid-year cumulative assessment	In-class quiz End of unit test Homework-Seneca Assignment Mid-year cumulative assessment	In-class quiz End of unit test Homework-Seneca Assignment Mid-year cumulative assessment
How does this unit prepare students for future study?	Students will deepen their understanding of health and disease at GCSE, and study of the immune system in later years.	Students will continue to deepen their knowledge of bond breaking and making, a key theme that is continued at GCSE and A-levels.	The formula for moments and use of it to solve problems involving levers and gears is a theme that is continued throughout GCSE and beyond.

Summer Term	Core Biology Biochemistry	Core Chemistry Earth's Resources	Core Physics Water waves Scientific Processes and Methods
Key subject knowledge	The topic of biochemistry comprises of two parts: cellular respiration (both aerobic and anaerobic) and, plant nutrition and photosynthesis. The topics build on foundational knowledge of 'cells to organ systems' and 'interdependence'.	Building on their understanding of Earth as a rocky planet (year 7 space topic) and evolution of the atmosphere (Planet Earth pollution), students will study in more detail the structure of the Earth and the rock cycle (drawing on prior KS2 knowledge).	The waves topic builds on students' prior knowledge of transverse waves (year 8 topic 'How we see') and apply this to water waves. Students will be taught that water waves can be reflected, refracted and how two waves can interact. In the scientific processes and methods topic pupils revisits the working scientifically skills students have been working on through year 7,8 and 9 and deepen their understanding to build the effective foundation for GCSE. Skills include presenting data, analysing patterns, drawing conclusions and discussing limitations. Constructing explanations, communicating ideas, critiquing claims and justifying opinions. Devising questions, testing hypotheses, planning to control variables and collecting data.

Key disciplinary knowledge	Investigate the effect of	Model weathering using	Create relationship of energy
	exercise on pulse/breathing	experimental work.	stores and transfer.
	rate.	Carry out practical work to	Comparative evaluation
	Carry out the variegated leaf	determine hardness of	Relate wave speed to frequency
	practical accurately and safely.	sedimentary rocks.	and wavelength.
	Draw and interpret graphs on	Relate crystal size to conditions of	Use the formula v=fλ
	how the rate of photosynthesis	crystallisation.	
	is affected by changing	Graphing Analysing data and	
	conditions.	drawing conclusions	
Summative Assessment Strategies	In-class quiz	In-class quiz	In-class quiz
	Homework-Seneca Assignment	Homework-Seneca Assignment	Homework-Seneca Assignment
	End of unit test	End of unit test	End of unit test
	End of Year GL assessment	End of Year GL assessment	End of Year GL assessment
How does this unit prepare students for future	Biochemistry in plants and	Rocks and minerals are important	Engineers must understand the
study?	animals – topics that are	for learning about earth	properties of waves—such
	covered in GCSE biology and	materials, structure, and systems.	as wavelength, frequency,
	beyond.	Studying these natural objects	amplitude and speed —and how
		incorporates an understanding of	waves can differ from one
		earth science, chemistry, and	another in order to design safe
		geology is taught in more depth	and effective products. The study
		at GCSE and at A-level in Geology	of waves continues at GCSE and
		and Archaeology.	beyond.