1) Kemi is subtracting fractions. She has drawn a bar model to help.

- a) Explain each step of the calculation. What do you do first? What comes next?
- b) Use the bar model to complete Kemi's calculation.

 $\frac{\square}{4} - \frac{\square}{8} = \frac{\square}{8}$

- 2) Use Kemi's bar model method to solve these calculations.
 - a) $\frac{2}{3} \frac{1}{6} =$ _____
 - b) $\frac{7}{8} \frac{1}{4} =$
 - c) $\frac{3}{5} \frac{3}{10} =$
- 3) Archie is subtracting fractions by finding the difference. He has drawn a number line to help.

Use the number line to complete Archie's calculation.

$$\frac{5}{4} - \frac{3}{8} =$$

- 4) Use Archie's number line method to solve these calculations. Give your answers in their simplest form.
 - a) $\frac{5}{6} \frac{1}{3} =$ _____
 - **b)** $\frac{8}{5} \frac{7}{10} =$ _____

1)	Is each statement	alwaus.	sometimes	or never	true?	Explain	how uou kr	10W.
٠,		arri argu,					900	

a) When you subtract fractions, you subtract both the numerator and the denominator.

b) You can't add or subtract fractions with different denominators.

2)

Convince me that $\frac{3}{8} - \frac{1}{8} = \frac{1}{4}$.

3) Afzol used a number line to find the difference between $\frac{7}{6}$ and $\frac{2}{3}$. Here is his working out:

 $\frac{2}{6} + \frac{1}{6} + \frac{1}{6} = \frac{4}{6}$

What mistake did he make? Show your working here.

1) Fill in the missing numbers.

a)
$$\frac{\square}{\square} - \frac{2}{3} = \frac{5}{6}$$

b)
$$\frac{3}{2} - \frac{1}{4} = \frac{1}{2}$$

c)
$$\frac{6}{5}$$
 - $\frac{10}{10}$ = $\frac{9}{10}$

- 2) Clara is thinking of two fractions.
 - Each fraction has a different denominator.
 - They have a difference of $\frac{5}{15}$.
 - ${\boldsymbol{\cdot}}$ Each fraction is less than one whole.
 - The largest number that the denominators could be is 15.
 - The fractions are in their simplest form.

What fractions could she be thinking of? Find all the different possibilities.

