How many quarters are there in $2\frac{3}{4}$?

quarters

1 mark

2

Complete these fractions to make each equivalent to $\frac{3}{5}$

1 mark

3

Circle the fraction that is greater than $\frac{1}{2}$ but less than $\frac{3}{4}$

$$\frac{7}{8}$$

$$\frac{2}{5}$$

1 mark

4

Two of the fractions below are **equivalent**.

Circle them.

$$\frac{2}{3}$$

$$\frac{6}{10}$$

$$\frac{9}{12}$$

$$\frac{16}{20}$$

1 mark

5

$$\frac{1}{9} + \frac{1}{3} =$$

In this diagram, the number in each box is the **sum** of the two numbers below it.

Write the missing numbers.

2 marks

7

$$\frac{5}{6} - \frac{2}{3} =$$

1 mark

8

This diagram shows four regular hexagons.

Shade in **one third** of the diagram.

1 mark

9

$$1\frac{1}{4} \times 4 =$$

Calculate $\frac{7}{16}$ of 288

1 mark

 $\frac{1}{3}$ of this square is shaded.

The same square is used in the diagrams below.

What fraction of this diagram is shaded?

1 mark

What fraction of this diagram is shaded?

1 mark

12 Calculate $\frac{7}{8}$ of 5000

Calculate of $\frac{5}{12}$ of **378**

1 mark

14

Write these fractions in order of size starting with the smallest.

 $\frac{3}{5}$

 $\frac{9}{10}$

 $\frac{17}{20}$

smallest

1 mark

15

Is
$$\frac{4}{9}$$
 greater than $\frac{1}{3}$?

Circle Yes or No.

Show how you know.

Is
$$\frac{4}{9}$$
 half of $\frac{8}{18}$?

Cirle Yes or No.

No Yes / No

Show how you know.

1 mark

Write numbers in the boxes to make this fraction calculation correct. (a) 16

$$\frac{1}{\Box} + \frac{\Box}{5} = \frac{7}{10}$$

1 mark

Now write two different numbers to make the calculation correct. (b)

$$\frac{1}{\prod} + \frac{1}{5} = \frac{7}{10}$$

Mark schemes

11 quarters

[1]

2 Fractions completed as shown below:

All three fractions must be correct for the award of the mark.

[1]

3 Fraction circled as shown:

Accept alternative unambiguous indications, eg fraction ticked, crossed or underlined.

[1]

Two fractions circled as shown:

Do not award the mark if additional incorrect fractions are circled. Accept alternative unambiguous indications, eg fractions ticked, crossed or underlined.

[1]

5 <u>4</u>

[1]

(a) $6\frac{1}{4}$

Accept equivalent fractions.

Do not accept $5\frac{5}{4}$

1

(b)	$1\frac{1}{2}$			
	_	Accept equivalent fractions, eg		
		$1\frac{2}{4}$, $\frac{3}{2}$, 1.5, 150%	1	[2]
				[Z]
<u>1</u>				[1]
Equiv shad	valent of o led, eg	ne third of each hexagon shaded, or a total of $1\frac{1}{3}$ hexagons		
	XX			
	_	Accept part shapes shaded as long as the intention is clear.		
		Accept inaccuracies in shading provided the intention is clear.		[1]
5				
				[1]
126				[1]
(a)	$\frac{1}{3}$	Accept equivalent fractions or decimals.	1	

(b) Accept equivalent fractions or decimals.

U1 [2]

4375 12

[1]

157.5 **OR** 157½ 13

[1]

Fractions must be written in the correct order for the award of the mark

Accept equivalent fractions or decimals.

[1]

(a) Indicates Yes and gives a correct explanation, eg:

•
$$\frac{1}{3} = \frac{3}{9}, \frac{3}{9} < \frac{4}{9}$$

•

- $\frac{1}{3}$ of 9 is 3 not 4
- $\frac{4}{9}$ should be $\frac{1.333...}{3}$, not $\frac{1}{3}$
- 0.33... < 0.44...
- $\frac{1}{3} = \frac{4}{12}, \frac{4}{12} < \frac{4}{9}$
- $\frac{1}{3}$ of 27 = 9 and $\frac{4}{9}$ of 27 = 12

Accept minimally acceptable explanation, eg:

- $\frac{3}{9}$
- $\frac{9}{27}$, $\frac{12}{27}$
- 4 is over a third of 9
- $\frac{1}{3}$ of 9 is 3
- $\frac{4}{9}$ is closer to a half than a third
- 0.33, 0.44
- It is one ninth bigger
- If you divide $\frac{4}{9}$ by a $\frac{1}{3}$ you get $\frac{4}{3}$
- $\frac{4}{12}$

! Inaccuracies in diagrams

Throughout the question, condone provided the pupil's intention to divide into thirds, ninths and/or eighteenths is clearly shown, and the correct sections are shaded

! Indicates **No**, or no decision made, but explanation clearly correct Condone provided the explanation is more than minimal

Do not accept incomplete or incorrect explanation, eg:

- If you draw a pie chart for $\frac{4}{9}$, more than $\frac{1}{3}$ is shaded
- Put them into 27ths and $\frac{4}{27} > \frac{1}{27}$
- $\frac{1}{3} \times 3 = \frac{3}{9}$

1 U1

- (b) Indicates **No** and gives a correct explanation, eg:
 - The fractions are equal; if you multiply the numerator and denominator by the same number the fractions are equivalent
 - $\frac{4}{9} = \frac{8}{18}$
 - $\frac{4}{9} \times 2 = \frac{8}{9} \text{ not } \frac{8}{18}$
 - $\frac{8}{18} \div 2 = \frac{4}{18}$ which is $\frac{2}{9}$ not $\frac{4}{9}$
 - To double the fraction, you don't double the numerator and the denominator, you just double the numerator
 - To halve the fraction, you don't halve the denominator, only the numerator Accept minimally acceptable explanation, eg:
 - Equal
 - Equivalent
 - Same
 - $\frac{4}{9}$ is half of $\frac{8}{9}$
 - $\frac{4}{18}$ is half of $\frac{8}{18}$
 - You only double the top number
 - You only halve the top number

! Indicates **Yes**, or no decision made, but explanation clearly correct Condone provided the explanation is more than minimal

Do not accept Incomplete explanation, eg

• If you double the top and the bottom number of $\frac{4}{9}$,

you get
$$\frac{8}{18}$$

1 U1

[2]

(a) Gives a pair of numbers to make the calculation correct, eg:

16

Accept the following

Do not accept use of non-integers, eg:

1

1

(b) Gives a different pair of numbers to make the calculation correct

[2]