

Denton Community College

Departmental Curriculum Map

Subject: Maths

Year Group: Y9

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Topics	Reasoning with Algebra	Constructing in 2 and 3	Reasoning with Number	Reasoning with	Reasoning with	Representations
		Dimensions		Geometry	Proportion	
What will	Students will be	Students will be expected	Students will be able to	Students will be	Students are	Students are expected
students be	expected to recognise	to name 2-D and 3-D	solve problems with	expected to find missing	expected to enlarge	to find the probability
learning	and draw lines parallel	shapes, recognise prisms,	integers and decimals.	angles on parallel lines,	a shape with a	of single events,
during this	to the axes.	draw plans and elevations		and use a chain of	positive and	relative frequency,
unit?		and be able to draw nets of	Students will be able to	reasoning to solve angle	negative scale	expected outcomes.
	Students will be	3-D shapes.	do calculations with the	problems, both	factor from a centre	
	expected to use table of		4 rules of fractions	numerically and	point.	Students are expected
	values to plot both		(Adding, subtracting,	algebraically.		to complete
	linear and non linear	Students will be able to	multiplying and dividing).		Students are	probability tree
	graphs.	find the area of 2-D shapes		Students are to be able	expected to solve	diagrams and use
		and surface area and	Students will be	to work out the	problems with	them to find a given
	Students will be	volume of 3-D shapes.	expected to find the	rotational symmetry of	direct proportion,	probability (with and
	exploring the gradient		highest common factor	shapes.	conversion graphs,	without replacement).
	and y-intercept of linear	Students will be expected	and lowest common		and inverse	
	equations.	to draw and measure	multiple of pairs of	Students will be	proportion.	Students should be
		angles.	numbers.	expected to translate	Students must also	able to draw and
	Students will be			and rotate shapes, as	recognise graphs	interpret quadratic
	learning to solve one	Students will be able to	Students will be	well as describing	that show both	graphs.
	and two step	find the locus of distance	expected to work with	shapes that have been	direct and inverse	
	equations/inequalities,	from a point, line, and to	percentages to find	translated or rotated.	proportion.	Students are expected
	unknowns on both sides	construct the	percentage of amounts,			to recognise linear,
	and equations in	perpendicular bisector and	increase/decrease,	Students will be	Students will be	quadratic, cubic and
	context.	angle bisector.	percentage change and	expected to use	able to solve ratio	reciprocal graphs.
	Students will be		generally recognising	Pythagoras' Theorem to	problems both	
	learning to rearrange		and solving percentage	find missing lengths of a	finding a part or a	
	formula.		problems.	right angle triangle	whole, best buy	

When will students be assessed?	Students will be given CABs after each component of learning. Students will have a pre test at the beginning of the half term and a post test at the end of the half term.	Students will be given CABs after each component of learning. Students will have a pre test at the beginning of the half term and a post test at the end of the half term.	Students will be given CABs after each component of learning. Students will have a pre test at the beginning of the half term and a post test at the end of the half term.	(hypotenuse and shorter sides), and to determine whether a triangle is right angled or not. Students will be given CABs after each component of learning. Students will have a pre test at the beginning of the half term and a post test at the end of the half term.	problems and problems involving algebra. Students will be expected to solve speed, distance, time questions both with and without a calculator, use distance time graphs, solve mass, density, volume problems and convert compound units. Students will be given CABs after each component of learning. Students will have a pre test at the beginning of the half term and a post test at the end of	Students will be given CABs after each component of learning. Students will have a pre test at the beginning of the half term and a post test at the end of the half
How will students be assessed?	CABs are used at the end of each small step Pretests are used before the the topic starts Post-tests are used at the end of the topic	CABs are used at the end of each small step Pretests are used before the the topic starts Post-tests are used at the end of the topic	CABs are used at the end of each small step Pretests are used before the the topic starts Post-tests are used at the end of the topic	CABs are used at the end of each small step Pretests are used before the the topic starts Post-tests are used at the end of the topic	the half term. CABs are used at the end of each small step Pretests are used before the the topic starts Post-tests are used at the end of the topic	term. CABs are used at the end of each small step Pretests are used before the the topic starts Post-tests are used at the end of the topic
Key Vocabulary	Parallel, Horizontal, Vertical, Straight Line, Graph, Axis, Equation,	Dimensions, Cube, Cuboid, Cone, Sphere, Pyramid, Face, Edge, Vertex,	Integer, Real, Rational, Irrational, Square root, Cube root, Surd, Simplify,	Alternate, Corresponding, Co- interior, Vertically	Similar, Ratio, Enlargement, Scale Factor,	Event, Outcome, Probability, Biased, Fair, Experiment, Trial,

	Linear, Table of Values, Gradient, Slope, Negative, Positive, Parallel, Intercept, y- axis, Reciprocal, Negative Reciprocal	Polygon, Prism, Cross Section, Net, Area, Elevation, Solid, Perpendicular Height, Units, Circumference, Surface area, Pi	Positive, Negative, Inverse, Directed, Product, Sum, Difference, Factor, Multiple, Numerator, Denominator, HCF, LCM, Fraction, Decimal, Percentage, Convert, Equivalent	Opoosite, Transversal, Parallel, Isosceles, Interior, Exterior, Regular, Equation, Polygon, Sum, Total, Parallelogram, Rhombus, Kite, Shape, Rotational, Symmetry, Regular, Irregular, Clockwise, Anti- clockwise, Pythagoras, Hypoteneuse	Corresponding, Object, Image, Centre, Inverted, Negative, Hypotenuse, Constant, Multiplier, Relationship, Linear, Non-Linear, Gradient, Variable, Proportional, Inverse, Speed, Distance, Time, Average, Origin, Axes	Relative Frequency, Independent, Venn Diagrams, Sample Space, Intersection, Two way table, Union, Quadratic, Parabola, Curve, Vertex, Turning point, Symmetry, Intersection, Solution, Simultaneous.
Homework opportunities to broaden or deepen student knowledge	Sparx Maths: Straight Line Graphs, Drawing Quadratic Graphs, The gradient of a line, sketching functions	Sparx Maths: Naming Shapes, Area of rectangles/triangles/trapez ium, surface area of prisms, loci, perpendicular bisectors.	Sparx Maths: Adding and Subtracting Fractions, Multiplying and Dividing Fractions, Percentage of Amounts, Percentage Increase/Decrease, Percentage Change, Factors, Multiples, HCF, LCM	Sparx Maths: Angles in parallel lines, Angles in Polygons, Pythagoras	Sparx Maths: Enlargement from a point, Enlargement with negative scale factor, Direct Proportion, Inverse Proportion, Conversion Graphs, Value for Money, Speed, Distance Time, Mass, Density and Volume.	Sparx Maths: Probability, Probability Tree Diagrams, Draw Quadratic Graphs, Reciprocal Graphs, Simultaneous Equations
Links to the National Curriculum	Develop algebraic and graphical fuency, including understanding linear and simple quadratic functions. Recognise, sketch and produce graphs of linear and quadratic functions of one variable with appropriate scaling	Use language and properties precisely to analyse numbers, algebraic expressions, 2-D and 3-D shapes. Use the properties of faces, surfaces, edges and vertices of cubes, cuboids, prisms, cylinders, pyramids, cones and	Use the four operations including formal written methods, applied to integers, decimals, proper and improper fractions, and mixed numbers, all both positive and negative. Use the concepts and vocabulary of prime numbers, factors,	Derive and use the standard ruler and compass constructions; recgonise and use the perpendicular distance from a point to a line as the shortest distance to the line. Describe, sketch and draw using conventional terms and	Construct similar shapes by enlargement, with and without coordinate grids. Use scale factors, scale diagrams and maps Apply angle facts, triangle congruence, similarity and	Record, describe and analyse the frequency of outcomes of simple probability experiments involving randomness, fairness, equally and unequally likely outcomes, using appropriate language and the 0-1 probability scale.

using aquations in v and			vetetiene, veinte lines	and antice of	Understand that the
using equations in x and	spheres to solve problems	multiples, common	natations: points, lines,	properties of	
y and the cartesian	in 3-D.	factors, common	parallel lines,	quadrilaterals to	probabilities of all
plane.	Derive and apply formulae	multiples, highest	perpendicular lines,	derive results about	possible outcomes
Interpret mathematical	to calculate and solve	common factor, lowest	right angles, regular	angles and sides.	sum to 1
relationship both	problems involving:	common multiple, prime	polygons, and other	Understand that a	enumerate sets and
algebraically and	perimeter and area of	factorisation, including	polygons that are	multiplicative	unions/intersections of
graphically.	triangles, parallelograms,	using product notation	reflectively and	relationship	sets systematically,
Reduce a given linear	trapezia, volume of	and the unique	rotationally symmetric.	between two	using tables, grids and
equation in two	cuboids and other prisms.	factorisation property.	Apply the properties of	quantities can be	Venn diagrams.
variables to the	Draw and measure line	Interpret and compare	angles at a point, angles	expressed as a ratio	Generate theoretical
standard form y = mx + ,	segments and angles in	numbers in standard	at a point on a straight	or a fraction.	sample spaces for
calculate and interpret	geometric figures,	form.	line, vertically opposite	Use Pythagoras'	single and combined
gradients and intercepts	including interpreting scale	Appreciate the infinite	angles.	Theorem and	events with equally
of graphs of such linear	drawings.	nature of the sets of	Understand and use the	trigonometric ratios	likely, mutually
equations numerically,	Derive and use the	integers, real and	relationship between	in similar triangles	exclusive outcomes
graphically and	standard ruler and	rational numbers.	parallel lines and	to solve problems	and use these to
algebraically.	compass constructions;	Define percentage as	alternate and	involving right-	calculate theoretical
Use linear and quadratic	recognise and use the	"number of parts per	corresponding angles.	angled triangles.	probabilities.
graphs to estimate	perpendicular distance	hundred", interpret	Identify properties of,	Divide a given	Recognise, sketch and
values of y for given	from a point to a line as	percentage changes as a	and describe the results	quantity into two	produce graphs of
values of x and vice	the shortest distance to	fraction or a decimal,	of, translations,	parts in a given part:	quadratic functions of
versa and to find	the line.	interpret these	rotations and	part or part: whole	one variable with
approximate solutions	Describe, sketch and draw	multiplicatively, express	reflections applied to	ratio; express the	appropriate scaling,
of simultaneous linear	using conventional terms	one quantity as a	given figures.	division of a	using equations in x
equations.	and notations: points,	percentage of another,	Describe, sketch and	quantity into two	and y and the
Move freely between	lines, parallel lines,	compare two quantities	draw using	parts as a ratio.	Cartesian plane.
different numerical,	perpendicular lines, right	using percentages, and	conventional terms and	Understand that a	Use quadratic graphs
algebraic, graphical and	angles, regular polygons,	work with percentages	notations.	multiplicative	to estimate values of y
diagrammatic	and other polygons that	greater than 100%.	Develop their	relationship	for given values of x
representations.	are reflectively and	Interpret fractions and	mathematical	between two	and vice versa.
Use algebraic methods	rotationally symmetric.	percentages as	knowledge, in part	quantities can be	Find approximate
to solve linear	Use the standard	operators.	through solving	expressed as a ratio	solutions to contextual
equations in one	conventions for labelling	Solve problems involving	problems and	or a fraction.	problems from given
variable.	the sides and angles of	percentage change,	evaluating the	Solve problems	graphs of a variety of
Understand and use	triangle ABC, and know and	including percentage	outcomes, including	involving direct and	functions, including
standard mathematical	use the criteria for	increase, decrease and	multi-step problems.	inverse proportion,	exponential and
formulae, rearrange	congruence of triangles.	original value problems	Use Pythagoras'	including graphical	reciprocal graphs.
			Theorem to solve		

formulae to change the	and simple interest in	problems involving	and algebraic	Use linear graphs to
C	•		-	
subject.	financial mathematics. w	right-angles triangles.	representations.	estimate values of y
Model situations or		Apply angle facts,	Use compound	for given values of x
procedures by		triangle congruence,	units such as speed,	and vice versa and to
translating them into		similarity and	unit pricing and	find approximate
algebraic expressions or		properties of	density to solve	solutions of
formulae, and by using		quadrilaterals to derive	problems.	simultaneous
graphs.		results about angles and	Understand that a	equations.
		sides, including	multiplicative	
		Pythagoras' Theorem,	relationship	
		and use known results	between two	
		to obtain simple proofs.	quantities can be	
		Interpret mathematical	expressed as a ratio	
		relationships both	or a fraction.	
		algebraically and	Change freely	
		geometrically.	between related	
			standard units.	